Volume 9, Issue 4 (2018)                   JMBS 2018, 9(4): 579-592 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousefi Javan I, Gharari F. Isolation and Study of MPK2 and AREB to Evaluate Drought Resistance of Tomato Plants. JMBS 2018; 9 (4) :579-592
URL: http://biot.modares.ac.ir/article-22-16089-en.html
1- Plant Production Department, Agriculture Faculty, Torbat Heydarieh University, Torbat Heydarieh, Iran, Torbat Heydarieh University, 7 Kilometer Torbat Heydarieh- Mashhad Road, Razavi Khorasan Province, Iran , I.javan@torbath.ac.ir
2- Plant Production Department, Agriculture Faculty, Torbat Heydarieh University, Torbat Heydarieh, Iran
Abstract:   (2916 Views)
Aims: Osmotic stress such as drought, salinity, and cold is one of the most important stresses. The aim of this study was to isolate and evaluate the genes of AREB and MPK2 in order to study the resistance to drought of tomato plants.
Materials and Methods: In this experimental study, seeds of two varieties of Tomato (Red Cloud) and (Peto Pride; resistant and susceptible to drought stress, respectively) were grown in drought treatment levels of -2 and -4. This study used 3 replications by a model based on a completely randomized block design. Sampling was done for Thiobarbituric acid reactive material (TBARM) for each treatment in 3 replications. Randomized and repeated sampling were done for molecular studies and the genes expression. AREB1 and MPK2 genes were studied, using bioinformatics resources and with the help of specific primers, making cDNA, PCR, and Electrophoresis. The analysis of variance test and SPSS 15 software were used
Findings: With increasing drought stress, most of morphological traits had a considerable decline, but cellular oxidative index increased with the increase of stress, so that TBARM increased. The expression of AREB1 was higher than that of MPK2 gene expression. The rate of similarity between LeAREB and kinase 2 protein sequences in resistant tomatoes was 31%.
Conclusion: With increasing drought stress, most morphological traits have a significant decline, but TBARM shows a significant increase with increasing stress. The AREB1 resistant drought gene is induced by the effects of drought stresses, while the expression of the MPK2 gene does not show a significant difference.
Full-Text [PDF 1625 kb]   (3983 Downloads)    
Article Type: _ | Subject: Agricultural Biotechnology
Received: 2016/11/28 | Accepted: 2017/12/4 | Published: 2018/12/21

1. Thomashow MF. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:571-99. [Link] [DOI:10.1146/annurev.arplant.50.1.571]
2. Bayoumil TY, Manal HE, Metwali EM. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr J Biotechnol. 2008;7(14):2341-52. [Link]
3. Bray EA. Molecular and physiological responses to water deficit stress. In: Jenks MA, Hasegawa PM, Jain SHM, Editors. Advances in molecular breeding toward drought and salt tolerant crops. Chicago: Springer Science & Business Media; 2009. pp. 121-40 [Link]
4. Shao HB, Liang MA, Shao MA, Wang BC. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stageBioninterfaces. 2005;42(2):107-13. [Link]
5. Amiri Oghan H, Moghadam M, Ahmadi MR, Valizadeh M, Shakiba MR. Heritability of seed yield and yield components in rapeseed (Brassica napus) under drought stress and normal conditions. Seed Plant. 2002;18(2):179-99. (Persian) [Link]
6. Gray WM. Hormonal regulation of plant growth and development. PLoS Biol. 2004;2(9):e311. [Link] [DOI:10.1371/journal.pbio.0020311]
7. Wilkinson S, Davies WJ. ABA‐based chemical signalling: The co‐ordination of responses to stress in plants. Plant Cell Environ. 2002;25(2):195-210. [Link] [DOI:10.1046/j.0016-8025.2001.00824.x]
8. Agarwal, PK, Agarwal P, Reddy M, Sopory S. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006;25(12):1263-74. [Link] [DOI:10.1007/s00299-006-0204-8]
9. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high salinity conditions. Proc Natl Acad Sci U S A. 2000;97(21):11632-7. [Link] [DOI:10.1073/pnas.190309197]
10. Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247-73. [Link] [DOI:10.1146/annurev.arplant.53.091401.143329]
11. Kang JY, Choi HI, Im MY, Kim SY. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell. 2002;14(2):343-57. [Link] [DOI:10.1105/tpc.010362]
12. Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signal Behav. 2007;2(3):135-8. [Link] [DOI:10.4161/psb.2.3.4156]
13. Mazandarani A, Rahimmalek M, Navabpour S, Ramezanpoor S. Investigation of expression of catalase gene induced by drought in soybean cultivars. 3rd National Conference on Agricultural Biotechnology in Iran, Plant genetic engineering and production technology, Mashhad, University of Ferdowsi Mashhad, September 3-5, 2012. Mashhad: University of Ferdowsi Mashhad; 2012. (Persian) [Link]
14. Hagege D, Nouvelot A, Boucard J, Gaspar T. Malondialdehyde titration with thiobarbiturate in plant extracts: Avoidance of pigment interference. Phytochem Anal. 1990;1(2):86-9. [Link] [DOI:10.1002/pca.2800010208]
15. Aras S, Duran A, Yenilmez G. Isolation of DNA for RAPD analysis from dry leaf material of someHesperis L. specimens. Plant Mol Biol Rep. 2003;21(4):461-2. [Link] [DOI:10.1007/BF02772597]
16. Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339(1):62-6. [Link] [DOI:10.1016/S0304-3940(02)01423-4]
17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. [Link] [DOI:10.1006/meth.2001.1262]
18. Van Ree R. Clinical importance of non-specific, lipid transfer proteins as food allergens. Biochem Soc Trans. 2002;30(pt 6):910-3. [Link] [DOI:10.1042/bst0300910]
19. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008;36(suppl-2):W5-9. [Link] [DOI:10.1093/nar/gkn201]
20. Edstam MM, Viitanen L, Salminen TA, Edqvist J. Evolutionary history of the non-specific lipid transfer proteins. Mol Plant. 2011;4(6):947-64. [Link] [DOI:10.1093/mp/ssr019]
21. Emamzadeh AR, Hosseinkhani S, Sadeghizadeh M, Nikkhah M, Chaichi MJ, Mortazavi M. CDNA cloning, expression and homology modeling of a luciferase from the Firefly Lampyroidea maculata. Korean Soc Biochem Mol Biol. 2006;39(5):578-85. [Link] [DOI:10.5483/BMBRep.2006.39.5.578]
22. Kolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990;276(1-2):172-4. [Link] [DOI:10.1016/0014-5793(90)80535-Q]
23. Hartz C, Lauer I, Del Mar San Miguel Moncin M, Cistero-Bahima A, Foetisch K, Lidholm J, et al. Comparison of IgE-binding capacity, cross-reactivity and biological potency of allergenic non-specific lipid transfer proteins from peach, cherry and hazelnut. Int Arch Allergy Immunol. 2010;153(4):335-46. [Link] [DOI:10.1159/000316344]
24. Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol. 1999;55(2):85-97. [Link] [DOI:10.1006/pmpp.1999.0213]
25. Sarowar S, Kim YJ, Kim KD, Hwang BK, Ok Sh, Shin JS. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Rep. 2009;28(3):419-27. [Link] [DOI:10.1007/s00299-008-0653-3]
26. Fernandez-Fuentes N, Madrid-Aliste CJ, Rai BK, Fajardo JE, Fiser As. M4T: A comparative protein structure modeling server. Nucleic Acids Res. 2007;35(suppl-2):W363-8. [Link] [DOI:10.1093/nar/gkm341]
27. Yiliang L, Xiaohua S, Zhang B, Huang Q, Zhang X, Huang RF. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance. Tree Physiol. 2009;29(2):273-9. [Link]
28. Zhang Z, Li F, Li D, Zhang H, Huang R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta. 2010;232(3):765-74. [Link] [DOI:10.1007/s00425-010-1208-8]
29. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: Current concepts and the novel "gene expression's CT difference" formula. J Mol Med. 2006;84(11):901-10. [Link] [DOI:10.1007/s00109-006-0097-6]
30. Zimmermann p, Zentgraf U. The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett. 2005;10(3):515-34. [Link]
31. Gomarian M, Malboobi MA, Darvish F, Mohammadi SA. Comparison inducible candidate gene expression patterns under salinity stress in bread wheat (Triticum aestivum L.). New Find Agric. 2012;6(2):151-63. (Persian) [Link]
32. Wang J, Yang L, Zhao X, Li J, Zhang D. Characterization and phylogenetic analysis of allergenic Tryp_alpha_amyl protein family in plants. J Agric Food Chem. 2014;62(1):270-8. [Link] [DOI:10.1021/jf402463w]
33. Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsmoto K, et al. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996;93(2):765-9. [Link] [DOI:10.1073/pnas.93.2.765]
34. Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A. 1997;94(3):1035-40. [Link] [DOI:10.1073/pnas.94.3.1035]
35. Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought- responsive element in an ABA-dependent pathway. Plant J. 2002;30(6):679-89. [Link] [DOI:10.1046/j.1365-313X.2002.01325.x]
36. Magnani E, Sjölander K, Hake S. From endonucleases to transcription factors: Evolution of the AP2 DNA binding domain in plants. Plant Cell. 2004;16(9):2265-77. [Link] [DOI:10.1105/tpc.104.023135]
37. Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NP, et al. The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol. 2005;46(9):1525-39. [Link] [DOI:10.1093/pcp/pci165]
38. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high-salt- and cold-responsive gene expression. Plant J. 2003;33(4):751-63. [Link] [DOI:10.1046/j.1365-313X.2003.01661.x]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.