Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 211-221 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shamriz S, Ofoghi H. Chlamydomonas reinhadtii as a novel photobioreactor to produce recombinant proteins. JMBS 2019; 10 (2) :211-221
URL: http://biot.modares.ac.ir/article-22-16250-en.html
1- Biotechnology Department, Iranian Research Organization for Science & Technology, Tehran, Iran
2- Biotechnology Department, Iranian Research Organization for Science & Technology, Tehran, Iran, Biotechnology Department, Iranian Research Organization for Science & Technology, Tehran, Iran , Ofoghi@irost.ir
Abstract:   (7420 Views)
Microalgae are microscopic algae found in a wide range of habitats including freshwater and marine systems. Over the last decades, biotechnological processes based on microalgae have been receiving increasing interest due to their potential to produce large quantities of valuable products used as human food supplements, pharmaceuticals and animal feed. Microalgae have also been proved as an efficient and cost-effective platform for recombinant protein production. Most progress in this field has been achieved using Chlamydomonas reinhardtii, a photosynthetic unicellular alga which has been mostly considered as a model organism in different studies. High growth rate, ease of cultivation, well-established genetics and the ability to perform post-translational modifications are the most beneficial attributes that have made C. reinhardtii an attractive system for the expression of recombinant proteins. In this review, we focus on C. reinhardtii as a novel platform for the development of advanced recombinant products and compare them with other commonly used expression systems. We also present a comprehensive overview of its structure, life cycle, culture systems, and media in detail and then discuss the strategies for engineering its three different genomes to produce recombinant cells. Finally, algal culture collections in the world are introduced.
Full-Text [PDF 1273 kb]   (5024 Downloads)    
Article Type: Review | Subject: Agricultural Biotechnology
Received: 2017/11/25 | Accepted: 2018/02/27 | Published: 2019/06/20

References
1. Cohen SN, Chang AC, Boyer HW, Helling RB. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A. 1973;70(11):3240-4. [Link] [DOI:10.1073/pnas.70.11.3240]
2. Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A. 1979;76(1):106-10. [Link] [DOI:10.1073/pnas.76.1.106]
3. Kinch MS. An overview of FDA-approved biologics medicines. Drug Discov Today. 2015;20(4):393-8. [Link] [DOI:10.1016/j.drudis.2014.09.003]
4. Rader RA. FDA biopharmaceutical product approvals and trends in 2012. Bioprocess Int. 2013;11(3):18-27. [Link]
5. Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27(3):297-306. [Link] [DOI:10.1016/j.biotechadv.2009.01.008]
6. Kordbacheh F, Ofoghi H, Akbarzadeh A, Jafari M, Salmanian AH. High level expression and chloroplast targeting of human calcitonin (hCT) in transgenic tobacco plants. Transgenic Plant J. 2011;5(1):57-61. [Link]
7. Ofoghi H, Mironova R, Moazami N, Domonskv N, Ivanov I. Human calcitonin tetrameric gene: Comparative expression in yeast and transgenic potato plants. Biotechnol Biotechnol Equip. 1999;13(1):20-4. [Link] [DOI:10.1080/13102818.1999.10819012]
8. Ofoghi H, Moazami N, Domonsky NN, Ivanov I. Cloning and expression of human calcitonin genes in transgenic potato plants. Biotechnol Lett. 2000;22(7):611-5. [Link] [DOI:10.1023/A:1005629718949]
9. Ofoghi H, Moazami N, Ivanov I. Comparison of tobacco etch virus and tobacco mosaic virus enhancers for expression of human calcitonin gene in transgenic potato plant. Key Eng Mater. 2005;277-279:7-11. [Link] [DOI:10.4028/www.scientific.net/KEM.277-279.7]
10. Moazez Y, Rajabi Memari H, Ofoghi H, Roayaei M, Nabati Ahmadi D. Evaluation of Spirulina platensis resistance to different antibiotics to find a selectable marker for genetic transformation. Jundishapur J Microbiol. 2013;6(7):e5456. [Link] [DOI:10.5812/jjm.5456]
11. Moazami N, Ashori AR, Ranjbar R, Tangestani M, Eghtesadi R, Sheykhi Nejad A. Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass Bioenergy. 2012;39:449-53. [Link] [DOI:10.1016/j.biombioe.2012.01.046]
12. Moazami N, Ranjbar R, Ashori AR, Tangestani M, Sheykhi Nejad A. Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island. Biomass Bioenergy. 2011;35(5):1935-9. [Link] [DOI:10.1016/j.biombioe.2011.01.039]
13. Manuell AL, Mayfield SP. A bright future for Chlamydomonas. Genome Biol. 2006;7(9):327. [Link] [DOI:10.1186/gb-2006-7-9-327]
14. Barrera DJ, Mayfield SP. High-value recombinant protein production in microalgae. In: Richmond A, Emeritus, Hu Q. Handbook of microalgal culture: Applied phycology and biotechnology. 2nd edition. Hoboken: John Wiley & Sons, Ltd; 2013. pp. 532-44. [Link]
15. Doron L, Segal N, Shapira M. Transgene expression in microalgae-from tools to applications. Front Plant Sci. 2016;7:505. [Link] [DOI:10.3389/fpls.2016.00505]
16. Barkan A. Expression of plastid genes: Organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol. 2011;155(4):1520-32. [Link] [DOI:10.1104/pp.110.171231]
17. Scharff LB, Bock R. Synthetic biology in plastids. Plant J. 2014;78(5):783-98. [Link] [DOI:10.1111/tpj.12356]
18. Harris EH. The Chlamydomonas sourcebook: Introduction to Chlamydomonas and its laboratory use. Oxford: Academic Press; 2009. [Link]
19. Harris EH. Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:363-406. [Link] [DOI:10.1146/annurev.arplant.52.1.363]
20. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 2007;318(5848):245-50. [Link] [DOI:10.1126/science.1143609]
21. Maul JE, Lilly JW, Cui L, De Pamphilis CW, Miller W, Harris EH, et al. The Chlamydomonas reinhardtii plastid chromosome: Islands of genes in a sea of repeats. Plant Cell. 2002;14(11):2659-79. [Link] [DOI:10.1105/tpc.006155]
22. Purton S. Tools and techniques for chloroplast transformation of Chlamydomonas. In: León R, Galván A, Fernández E, editors. Transgenic microalgae as green cell factories, advances in experimental medicine and biology. 616th Volume. New York: Springer; 2007. pp. 34-45. [Link] [DOI:10.1007/978-0-387-75532-8_4]
23. Boynton JE, Harris EH, Burkhart BD, Lamerson PM, Gillham NW. Transmission of mitochondrial and chloroplast genomes in crosses of Chlamydomonas. Proc Natl Acad Sci U S A. 1987;84(8):2391-5. [Link] [DOI:10.1073/pnas.84.8.2391]
24. Rasala BA, Mayfield SP. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng Bugs. 2011;2(1):50-4. [Link] [DOI:10.4161/bbug.2.1.13423]
25. Purton S, Szaub JB, Wannathong T, Young R, Economou CK. Genetic engineering of algal chloroplasts: Progress and prospects. Russ J Plant Physiol. 2013;60(4):491-9. [Link] [DOI:10.1134/S1021443713040146]
26. 26- Walker TL, Purton S, Becker DK, Collet C. Microalgae as bioreactors. Plant Cell Rep. 2005;24(11):629-41. [Link] [DOI:10.1007/s00299-005-0004-6]
27. Hallmann A. Algal transgenics and biotechnology. Transgenic Plant J. 2007;1(1):81-98. [Link]
28. Potvin G, Zhang Z. Strategies for high-level recombinant protein expression in transgenic microalgae: A review. Biotechnol Adv. 2010;28(6):910-8. [Link] [DOI:10.1016/j.biotechadv.2010.08.006]
29. Kindle KL. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1990;87(3):1228-32. [Link] [DOI:10.1073/pnas.87.3.1228]
30. Davies JP, Weeks DP, Grossman AR. Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res. 1992;20(12):2959-65. [Link] [DOI:10.1093/nar/20.12.2959]
31. Quinn JM, Kropat J, Merchant S. Copper response element and Crr1-dependent Ni(2+)-responsive promoter for induced, reversible gene expression in Chlamydomonas reinhardtii. Eukaryot Cell. 2003;2(5):995-1002. [Link] [DOI:10.1128/EC.2.5.995-1002.2003]
32. Fischer N, Rochaix JD. The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics. 2001;265(5):888-94. [Link] [DOI:10.1007/s004380100485]
33. Schroda M, Blöcker D, Beck CF. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J. 2000;21(2):121-31. [Link] [DOI:10.1046/j.1365-313x.2000.00652.x]
34. Loppes R, Radoux M, Ohresser MC, Matagne RF. Transcriptional regulation of the Nia1 gene encoding nitrate reductase in Chlamydomonas reinhardtii: Effects of various environmental factors on the expression of a reporter gene under the control of the Nia1 promoter. Plant Mol Biol. 1999;41(5):701-11. [Link] [DOI:10.1023/A:1006381527119]
35. Fuhrmann M, Oertel W, Hegemann P. A synthetic gene coding for the Green Fluorescent Protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J. 1999;19(3):353-61. [Link] [DOI:10.1046/j.1365-313X.1999.00526.x]
36. Stevens DR, Rochaix JD, Purton S. The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet. 1996;251(1):23-30. [Link] [DOI:10.1007/s004380050135]
37. Tang DK, Qiao SY, Wu M. Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. Biochem Mol Biol Int. 1995;36(5):1025-35. [Link]
38. Hall LM, Taylor KB, Jones DD. Expression of a foreign gene in Chlamydomonas reinhardtii. Gene. 1993;124(1):75-81. [Link] [DOI:10.1016/0378-1119(93)90763-S]
39. Guo SL, Zhao XQ, Tang Y, Wan C, Alam MA, Ho SH, et al. Establishment of an efficient genetic transformation system in Scenedesmus obliquus. J Biotechnol. 2013;163(1):61-8. [Link] [DOI:10.1016/j.jbiotec.2012.10.020]
40. Sizova I, Fuhrmann M, Hegemann P. A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene. 2001;277(1-2):221-9. [Link] [DOI:10.1016/S0378-1119(01)00616-3]
41. Cerutti H, Johnson AM, Gillham NW, Boynton JE. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: Integration into the nuclear genome and gene expression. Genetics. 1997;145(1):97-110. [Link]
42. Berthold P, Schmitt R, Mages W. An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist. 2002;153(4):401-1. [Link] [DOI:10.1078/14344610260450136]
43. Nelson JA, Savereide PB, Lefebvre PA. The CRY1 gene in Chlamydomonas reinhardtii: Structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol. 1994;14(6):4011-9. [Link] [DOI:10.1128/MCB.14.6.4011]
44. Neupert J, Karcher D, Bock R. Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J. 2009;57(6):1140-50. [Link] [DOI:10.1111/j.1365-313X.2008.03746.x]
45. Bruggeman AJ, Kuehler D, Weeks DP. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnol J. 2014;12(7):894-902. [Link] [DOI:10.1111/pbi.12192]
46. Kovar JL, Zhang J, Funke RP, Weeks DP. Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J. 2002;29(1):109-17. [Link] [DOI:10.1046/j.1365-313x.2002.01193.x]
47. Kindle KL, Schnell RA, Fernández E, Lefebvre PA. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol. 1989;109(6 Pt 1):2589-601. [Link] [DOI:10.1083/jcb.109.6.2589]
48. Debuchy R, Purton S, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: An important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 1989;8(10):2803-9. [Link] [DOI:10.1002/j.1460-2075.1989.tb08426.x]
49. Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, et al. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J. 2009;58(1):165-74. [Link] [DOI:10.1111/j.1365-313X.2008.03767.x]
50. Ferris PJ. Localization of the nic-7, ac-29 and thi-10 genes within the mating-type locus of Chlamydomonas reinhardtii. Genetics. 1995;141(2):543-9. [Link]
51. Mayfield SP, Kindle KL. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci U S A. 1990;87(6):2087-91. [Link] [DOI:10.1073/pnas.87.6.2087]
52. Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett. 2010;32(10):1373-83. [Link] [DOI:10.1007/s10529-010-0326-5]
53. Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: Status for the year 2000. Nucleic Acids Res. 2000;28(1):292. [Link] [DOI:10.1093/nar/28.1.292]
54. Tuller T, Waldman YY, Kupiec M, Ruppin E. Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci U S A. 2010;107(8):3645-50. [Link] [DOI:10.1073/pnas.0909910107]
55. Shamriz S, Ofoghi H, Moazami N. Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Comput Biol Med. 2016;76:24-9. [Link] [DOI:10.1016/j.compbiomed.2016.06.015]
56. Dauvillee D, Hilbig L, Preiss S, Johanningmeier U. Minimal extent of sequence homology required for homologous recombination at the psbA locus in Chlamydomonas reinhardtii chloroplasts using PCR-generated DNA fragments. Photosynth Res. 2004;79(2):219-24. [Link] [DOI:10.1023/B:PRES.0000015384.24958.a9]
57. Umen JG, Goodenough UW. Chloroplast DNA methylation and inheritance in Chlamydomonas. Genes Dev. 2001;15(19):2585-97. [Link] [DOI:10.1101/gad.906701]
58. Coll JM. Methodologies for transferring DNA into eukaryotic microalgae: A review. Span J Agric Res. 2006;4(4):316-30. [Link] [DOI:10.5424/sjar/2006044-209]
59. Randolph-Anderson B, Boynton JE, Dawson J, Dunder E, Eskes R, Gillham NW, et al. Sub-micron gold particles are superior to larger particles for efficient biolistic transformation of organelles and some cell types. BioRad Bull. 2015. [Link]
60. Economou C, Wannathong T, Szaub J, Purton S. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. In: Maliga P. Chloroplast biotechnology: Methods and protocols. New York City: Humana Press; 2014. pp. 401-11. [Link] [DOI:10.1007/978-1-62703-995-6_27]
61. 61- Bateman JM, Purton S. Tools for chloroplast transformation in Chlamydomonas: Expression vectors and a new dominant selectable marker. Mol Gen Genet MGG. 2000;263(3):404-10. [Link] [DOI:10.1007/s004380051184]
62. Gutiérrez CL, Gimpel J, Escobar C, Marshall SH, Henríquez V. Chloroplast genetic tool for the green microalgae Haematococcus pluvialis (Chlorophyceae, Volvocales)(1). J Phycol. 2012;48(4):976-83. [Link] [DOI:10.1111/j.1529-8817.2012.01178.x]
63. Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: Molecular and genetic characterization of integration events. Genetics. 1990;126(4):875-88. [Link]
64. Remacle C, Cline S, Boutaffala L, Gabilly S, Larosa V, Rosario Barbieri M, et al. The ARG9 gene encodes the plastid-resident N-acetyl ornithine aminotransferase in the green alga Chlamydomonas reinhardtii. Eukaryot Cell. 2009;8(9):1460-3. [Link] [DOI:10.1128/EC.00108-09]
65. Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: A selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Res. 1991;19(15):4083-9. [Link] [DOI:10.1093/nar/19.15.4083]
66. Przibilla E, Heiss S, Johanningmeier U, Trebst A. Site-specific mutagenesis of the D1 subunit of photosystem II in wild-type Chlamydomonas. Plant Cell. 1991;3(2):169-74. [Link] [DOI:10.1105/tpc.3.2.169]
67. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science. 1988;240(4858):1534-8. [Link] [DOI:10.1126/science.2897716]
68. Cheng Q, Day A, Dowson-Day M, Shen GF, Dixon R. The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitutes for the chlL gene in Chlamydomonas reinhardtii. Biochem Biophys Res Commun. 2005;329(3):966-75. [Link] [DOI:10.1016/j.bbrc.2005.02.064]
69. Kindle KL, Richards KL, Stern DB. Engineering the chloroplast genome: Techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1991;88(5):1721-5. [Link] [DOI:10.1073/pnas.88.5.1721]
70. Dreesen IA, Charpin-El Hamri G, Fussenegger M. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J Biotechnol. 2010;145(3):273-80. [Link] [DOI:10.1016/j.jbiotec.2009.12.006]
71. Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, et al. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J. 2007;5(3):402-12. [Link] [DOI:10.1111/j.1467-7652.2007.00249.x]
72. Rasala BA, Muto M, Lee PA, Jager M, Cardoso RM, Behnke CA, et al. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J. 2010;8(6):719-33. [Link] [DOI:10.1111/j.1467-7652.2010.00503.x]
73. Sun M, Qian K, Su N, Chang H, Liu J, Shen G. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett. 2003;25(13):1087-92. [Link] [DOI:10.1023/A:1024140114505]
74. Michelet L, Lefebvre-Legendre L, Burr SE, Rochaix JD, Goldschmidt-Clermont M. Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Plant Biotechnol J. 2011;9(5):565-74. [Link] [DOI:10.1111/j.1467-7652.2010.00564.x]
75. Suay L, Salvador ML, Abesha E, Klein U. Specific roles of 5' RNA secondary structures in stabilizing transcripts in chloroplasts. Nucleic Acids Res. 2005;33(15):4754-61. [Link] [DOI:10.1093/nar/gki760]
76. Rott R, Liveanu V, Drager RG, Stern DB, Schuster G. The sequence and structure of the 3'-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol Biol. 1998;36(2):307-14. [Link] [DOI:10.1023/A:1005943701253]
77. Jones CS, Luong T, Hannon M, Tran M, Gregory JA, Shen Z, et al. Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Appl Microbiol Biotechnol. 2013;97(5):1987-95. [Link] [DOI:10.1007/s00253-012-4071-7]
78. Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, et al. Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A. 2012;110(1):E15-22. [Link] [DOI:10.1073/pnas.1214638110]
79. Boynton JE, Gillham NW. [25] Genetics and transformation of mitochondria in the green alga Chlamydomonas. IN: Hirs CHW, Timasheff SN. Methods in enzymology. 264th Volume. Amsterdam: Elsevier; 1996. pp. 279-96. [Link] [DOI:10.1016/S0076-6879(96)64027-0]
80. Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol. 2008;99(10):4021-8. [Link] [DOI:10.1016/j.biortech.2007.01.046]
81. Sastre RR, Csögör Z, Perner-Nochta I, Fleck-Schneider P, Posten C. Scale-down of microalgae cultivations in tubular photo-bioreactors-a conceptual approach. J Biotechnol. 2007;132(2):127-33. [Link] [DOI:10.1016/j.jbiotec.2007.04.022]
82. Brown TJ, Geen GH. The effect of light quality on the carbon metabolism and extracellular release of Chlamydomonas reinhardtii dangeard. J Phycol. 1974;10(2):213-20. [Link] [DOI:10.1111/j.1529-8817.1974.tb02701.x]
83. Sager R, Granick S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953;56(5):831-8. [Link] [DOI:10.1111/j.1749-6632.1953.tb30261.x]
84. Wang B, Lan CQ, Horsman M. Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv. 2012;30(4):904-12. [Link] [DOI:10.1016/j.biotechadv.2012.01.019]
85. Acién Fernández FG, Fernández Sevilla JM, Molina Grima E. Photobioreactors for the production of microalgae. Rev Environ Sci Bio Technol. 2013;12(2):131-51. [Link] [DOI:10.1007/s11157-012-9307-6]
86. Gorman DS, Levine RP. Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1965;54(6):1665-9. [Link] [DOI:10.1073/pnas.54.6.1665]
87. Sueoka N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1960;46(1):83-91. [Link] [DOI:10.1073/pnas.46.1.83]
88. Thacker A, Syrett PJ. The assimilation of nitrate and ammonium by Chlamydomonas reinhardi. New Phytol. 1972;71(3):423-33. [Link] [DOI:10.1111/j.1469-8137.1972.tb01942.x]
89. Hodson RC, Williams SK, Davidson WR Jr. Metabolic control of urea catabolism in Chlamydomonas reinhardi and Chlorella pyrenoidosa. J Bacteriol. 1975;121(3):1022-35. [Link]
90. Pineda M, Fernández E, Cárdenas J. Urate oxidase of Chlamydomonas reinhardii. Physiologia Plantarum. 1984;62(3):453-7. [Link] [DOI:10.1111/j.1399-3054.1984.tb04602.x]
91. Gresshoff PM. Amide metabolism of Chlamydomonas reinhardi. Arch Microbiol. 1981;128(3):303-6. [Link] [DOI:10.1007/BF00422535]
92. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, Mc Dowall A, et al. Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnol J. 2007;5(6):802-14. [Link] [DOI:10.1111/j.1467-7652.2007.00285.x]
93. Chen GQ, Chen F. Growing phototrophic cells without light. Biotechnol Lett. 2006;28(9):607-16. [Link] [DOI:10.1007/s10529-006-0025-4]
94. Adam Z, Clarke AK. Cutting edge of chloroplast proteolysis. Trends Plant Sci. 2002;7(10):451-6. [Link] [DOI:10.1016/S1360-1385(02)02326-9]
95. Spalding MH. The CO2-concentrating mechanism and carbon assimilation. Stern D. The Chlamydomonas sourcebook: Organellar and metabolic processes. 2nd Volume. Cambridge: Academic Press; 2009. pp. 257-301. [Link] [DOI:10.1016/B978-0-12-370873-1.00016-2]
96. Moon M, Kim CW, Park WK, Yoo G, Choi YE, Yang JW. Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res. 2013;2(4):352-7. [Link] [DOI:10.1016/j.algal.2013.09.003]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.