Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 231-240 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Montazer Z, Habibi-Najafi M, Mohebbi M, Oromieyee A. Study on Biodegradation of Sun Treated Low-Density Polyethylene (Ld-PE) Films by Plastic Degrading Bacteria in Bioreactors. JMBS 2019; 10 (2) :231-240
URL: http://biot.modares.ac.ir/article-22-16660-en.html
1- Food Science & Technology Department, Agriculture Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
2- Food Science & Technology Department, Agriculture Faculty, Ferdowsi University of Mashhad, Mashhad, Iran, Food Science & Technology Department, Agriculture Faculty, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran. Postal Code: 9177948978 , habibi@um.ac.ir
3- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
Abstract:   (4135 Views)
Accumulation of polyethylene (PE) wastes has become a major environmental problem. The objective of this research was to assess the potential for microbial degradation of sun-treated low-density PE as a natural way to eliminate PE wastes in semi-industrial condition. Low-density polyethylene (LDPE) films were exposed to one month of sun radiation treatment and then cultured with two PE-degrading bacteria (Sphigobacterium moltivorum IRN11 and Delftia tsuruhatensis IRN27) in aerobic bioreactors over 100 days. Weight loss percentage of the PE and the culture pH were measured. Also, Changes in the chemical structure of the LDPE were assessed by FT-IR and surface erosion and microbial layer formation by bacterial activity was observed by Scanning Electron Microscopy. Partial increases in the culture pH were recorded during the incubation period. The weight loss percentage for T-LDPE samples cultured with Sphigobacterium moltivorum IRN11 and Delftia tsuruhatensis IRN27 was 3.31%±0.013 and 3.98%±0.025 in TLDPE samples, respectively, and functional carbonyl-groups in the TLDPE samples decreased significantly due to bacterial hydrolysis. SEM images showed the different microbial layer formation on sun-treated low-density polyethylene (T-LDPE) for both bacteria. Our results suggest that exposure of LDPE to sun radiation had a significant effect on biodegradation of Ld-PE films and that the two bacteria tested were able to enhance the biodegradation the T-LDPE.
Full-Text [PDF 975 kb]   (1377 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2018/02/18 | Accepted: 2018/04/9 | Published: 2019/06/20

1. PlasticsEurope, EPRO. Plastics - the facts 2016, an analysis of European plastics production, demand and waste data [Internet]. Brussels: PlasticEurope; 2016 [cited 2017 Jul 15]. Available from: https://www.plasticseurope.org/application/files/4315/1310/4805/plastic-the-fact-2016.pdf [Link]
2. Emadian SM, Onay TT, Demirel B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017;59:526-36. [Link] [DOI:10.1016/j.wasman.2016.10.006]
3. Bergmann M, Gutow L, Klages M, editors. Marine anthropogenic litter. Cham: Springer; 2015. pp. 117-40. [Link] [DOI:10.1007/978-3-319-16510-3]
4. Gourmelon G. Global plastic production rises, recycling lags [Internet]. Washington DC: Worldwatch Institute; 2015 [cited 2017 Jul 15]. Available from: http://www.worldwatch.org/global-plastic-production-rises-recycling-lags-0 [Link]
5. Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol Adv. 2008;26(3):246-65. [Link] [DOI:10.1016/j.biotechadv.2007.12.005]
6. Ojeda T, Freitas A, Dalmolin E, Dal Pizzol M, Vignol L, Melnik J, et al. Abiotic and biotic degradation of oxo-biodegradable foamed polystyrene. Polym Degrad Stab. 2009;94(12):2128-33. [Link] [DOI:10.1016/j.polymdegradstab.2009.09.012]
7. Arutchelvi J, Joseph C, Doble M. Process optimization for the production of rhamnolipid and formation of biofilm by Pseudomonas aeruginosa CPCL on polypropylene. Biochem Eng J. 2011;56(1-2):37-45. [Link] [DOI:10.1016/j.bej.2011.05.004]
8. Jeon HJ, Kim MN. Degradation of linear low density polyethylene (LLDPE) exposed to UV-irradiation. Eur Polym J. 2014;52:146-53. [Link] [DOI:10.1016/j.eurpolymj.2014.01.007]
9. BA Hons AS. Why we need to be clear about biodegradables and compostables [Internet]. Bude: Ei8htdesign; 2018 [cited 2018 Feb 20]. Available from: http://www.ei8htdesign.net/new-blog-avenue/ [Link]
10. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of Plastics. Int J Mol Sci. 2009;10(9): 3722-42. [Link] [DOI:10.3390/ijms10093722]
11. Albertsson AC, Anderson SO, Karlsson S. The mechanism of biodegradation of polyethylene. Polym Degrad Stab. 1987;18(1):73-87. [Link] [DOI:10.1016/0141-3910(87)90084-X]
12. Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K. Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J Appl Polym Sci. 1995;56(13):1789-96. [Link] [DOI:10.1002/app.1995.070561309]
13. Peixoto J, Silva LP, Krüger RH. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater. 2017;324(Pt B):634-44. [Link] [DOI:10.1016/j.jhazmat.2016.11.037]
14. Usha R, Sangeetha T, Palaniswamy M. Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agric Res Cent J Int. 2011;2(4):200-4. [Link]
15. Abrusci C, Pablos JL, Corrales T, López-Marín J, Marín I, Catalina F. Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives. Int Biodeterior Biodegrad. 2011;65(3):451-9. [Link] [DOI:10.1016/j.ibiod.2010.10.012]
16. Abrusci C, Pablos JL, Marín I, Espí E, Corrales T, Catalina F. Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal- and photo-degraded low density polyethylene mulching films. Int Biodeterior Biodegrad. 2013;83:25-32. [Link] [DOI:10.1016/j.ibiod.2013.04.002]
17. Das MP, Kumar S. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech. 2015;5(1):81-6. [Link] [DOI:10.1007/s13205-014-0205-1]
18. Sahebnazar Z, Shojaosadati SA, Mohammad Taheri M, Nosrati, M. Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Manag. 2010;30(3):396-401. [Link] [DOI:10.1016/j.wasman.2009.09.027]
19. Das MP, Kumar S. Influence of cell surface hydrophobicity in colonization and biofilm formation on LDPE biodegradation. Int J Pharm Pharm Sci. 2013;5(4):690-4. [Link]
20. Sudhakar M, Doble M, Sriyutha Murthy P, Venkatesan R. Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int Biodeterior Biodegrad. 2008;61(3):203-13. [Link] [DOI:10.1016/j.ibiod.2007.07.011]
21. Harshvardhan K, Jha B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull. 2013;77(1-2):100-6. [Link] [DOI:10.1016/j.marpolbul.2013.10.025]
22. Paço A, Duarte K, Da Costa JP, Santos PSM, Pereira R, Pereira ME, et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ. 2017;586:10-15. [Link] [DOI:10.1016/j.scitotenv.2017.02.017]
23. Yoon MG, Jeon JH, Kim MN. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. J Bioremediat Biodegrad. 2012;3(4):1000144. [Link]
24. Jeon HJ, Kim MN. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Int Biodeterior Biodegrad. 2015;103:141-6. [Link] [DOI:10.1016/j.ibiod.2015.04.024]
25. El-Shafei HA, Abd El-Nasser NH, Kansoh AL, Ali AM. Biodegradation of disposable polyethylene by fungi Streptomyces species. Polym Degrad Stab. 1998;62(2):361-5. [Link] [DOI:10.1016/S0141-3910(98)00019-6]
26. Yang J, Yang Y, Wu WM, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol. 2014;48(23):13776-84. [Link] [DOI:10.1021/es504038a]
27. Albertsson AC, Karlsson S. The influence of biotic and abiotic environments on the degradation of polyethylene. Prog Polym Sci. 1990;15(2):177-92. [Link] [DOI:10.1016/0079-6700(90)90027-X]
28. Yamada-Onodera K, Mukumoto H, Katsuyama Y, Saiganji A, Tani Y. Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab. 2001;72(2):323-7. [Link] [DOI:10.1016/S0141-3910(01)00027-1]
29. Yashchuk O, Portillo FS, Hermida EB. Degradation of polyethylene film samples containing oxo-degradable additives. Procedia Mater Sci. 2012;1:439-45. [Link] [DOI:10.1016/j.mspro.2012.06.059]
30. Hasan F, Shah AA, Hameed A, Ahmed S. Synergistic effect of photo and chemical treatment on the rate of biodegradation of low density polyethylene by Fusarium sp. AF4. J Appl Polym Sci. 2007;105(3):1466-70. [Link] [DOI:10.1002/app.26328]
31. Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV. Biodegradation of polyethylene and polypropylene. Indian J Biotechnol. 2008;7:9-22. [Link]
32. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. Int J Mol Sci. 2009;10(9):3722-42. [Link] [DOI:10.3390/ijms10093722]
33. Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G. Environmental biodegradation of polyethylene. Polym Degrad Stab. 2003;81(3):441-52. [Link] [DOI:10.1016/S0141-3910(03)00129-0]
34. Mor R, Sivan A. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: Biodegradation of polystyrene. Biodegradation. 2008;19(6):851-8. [Link] [DOI:10.1007/s10532-008-9188-0]
35. Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault JP, et al. Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab. 2010;95(6):1011-21. [Link] [DOI:10.1016/j.polymdegradstab.2010.03.009]
36. Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR. Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol. 2012;52(3):411-9. [Link] [DOI:10.1007/s12088-012-0250-6]
37. Vimala PP, Mathew L. Biodegradation of Polyethylene using Bacillus subtilis. Procedia Technol. 2016;24:232-9. [Link] [DOI:10.1016/j.protcy.2016.05.031]
38. Jeyakumar D, Chirsteen J, Doble M. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour Technol. 2013;148:78-85. [Link] [DOI:10.1016/j.biortech.2013.08.074]
39. Nanda S, Sahu SS. Biodegradability of polyethylene by Brevibacillus, Pseudomonas, and Rhodococcus spp. N Y Sci J. 2010;3(7):95-8. [Link]
40. Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol. 2005;98(5):1093-100. [Link] [DOI:10.1111/j.1365-2672.2005.02553.x]
41. Marqués-Calvo MS, Cerdà-Cuéllar M, Kint DPR, Bou JJ, Muñoz-Guerra S. Enzymatic and microbial biodegradability of poly(ethylene terephthalate) copolymers containing nitrated units. Polym Degrad Stab. 2006;91(4):663-71. [Link] [DOI:10.1016/j.polymdegradstab.2005.05.014]
42. Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme - laccase - in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad. 2013;84:204-10. [Link] [DOI:10.1016/j.ibiod.2012.03.001]
43. Kawai F, Watanabe M, Shibata M, Yokoyama Sh, Sudate Y, Hayashi Sh. Comparative study on biodegradability of polyethylene wax by bacteria and fungi. Polym Degrad Stab. 2004;86(1):105-14. [Link] [DOI:10.1016/j.polymdegradstab.2004.03.015]
44. Watanabe M, Kawai F, Shibata M, Yokoyama Sh, Sudate Y. Computational method for analysis of polyethylene biodegradation. J Comput Appl Math. 2003;161(1):133-44. [Link] [DOI:10.1016/S0377-0427(03)00551-X]
45. Muenmee S, Chiemchaisri W, Chiemchaisri C. Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegrad. 2016;113:244-55. [Link] [DOI:10.1016/j.ibiod.2016.03.016]
46. Yabuuchi E, Kaneko T, Yano I, Wayne Moss C, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Evolut Microbiol. 1983;33(3):580-98. [Link] [DOI:10.1099/00207713-33-3-580]
47. Amir-Al Haque N. Sphingobacterium multivorum [Internet]. Gambier OH: MicrobeWiki; 2016 [cited 2017 Nov 5]. Available from: https://microbewiki.kenyon.edu/index.php/Sphingobacterium_multivorum [Link]
48. Noparat P, Maneerat S, Saimmai A. Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil. Appl Biochem Biotechnol. 2014;172(8):3949-63. [Link] [DOI:10.1007/s12010-014-0829-y]
49. Kawai F, Shibata M, Yokoyama S, Maeda S, Tada K, Hayashi S. Biodegradability of Scott‐Gelead photodegradable polyethylene and polyethylene wax by microorganisms. Macromol Symp. 1999;144(1):73-84. [Link] [DOI:10.1002/masy.19991440108]
50. Shigematsu T, Yumihara K, Ueda Y, Numaguchi M, Morimura S, Kida K. Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol. 2003;53(Pt 5):1479-83. [Link] [DOI:10.1099/ijs.0.02285-0]
51. Koutny M, Amato P, Muchova M, Ruzicka J, Delort AM. Soil bacterial strains able to grow on the surface of oxidized polyethylene film containing prooxidant additives. . Int Biodeterior Biodegrad. 2009;63(3):354-7. [Link] [DOI:10.1016/j.ibiod.2008.11.003]
52. Sawadogo A, Harmonie OC, Sawadogo JB, Kaboré A, Traoré AS, Dianou D. Isolation and characterization of hydrocarbon-degrading bacteria from wastewaters in Ouagadougou, Burkina Faso. J Environ Prot. 2014;5(12):1183-96. [Link] [DOI:10.4236/jep.2014.512115]
53. Parmila R, Ramesh KV. Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter bumannii. Afr J Bacteriol Res. 2015;7:24-8. [Link]
54. Chia KH, Nanthini J, Thottathil GP, Najimudin N, Mas Haris MRH, Sudesh K. Identification of new rubber-degrading bacterial strains from aged latex. Polym Degrad Stab. 2014;109:354-61. [Link] [DOI:10.1016/j.polymdegradstab.2014.07.027]
55. Arkatkar A, Arutchelvi J, Bhaduri S, Uppara PV, Doble M. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeterior Biodegrad. 2009;63(1):106-11. [Link] [DOI:10.1016/j.ibiod.2008.06.005]
56. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing; 2018 [cited 2018 Feb 20]. Available from: https://www.gbif.org/en/tool/81287/r-a-language-and-environment-for-statistical-computing [Link]
57. Kathiresan K. Polythene and plastics-degrading microbes from the mangrove soil. Revista de Biología Tropical. 2003;51(3-4):629-33. [Link]
58. Priyanka N, Archana T. Biodegradability of polythene and plastic by the help of microorganism: A way for brighter future. J Environ Anal Toxicol. 2011;1(4):1000111. [Link] [DOI:10.4172/2161-0525.1000111]
59. Restrepo-Flórez JM, Bassi A, Thompson MR. Microbial degradation and deterioration of polyethylene - a review. Int Biodeterior Biodegrad. 2014;88:83-90. [Link] [DOI:10.1016/j.ibiod.2013.12.014]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.