Volume 11, Issue 3 (2020)                   JMBS 2020, 11(3): 0-0 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Najmi Z, Ebrahimipour G. Biosutfactant production by an indigenous bacterium using molasses and partial characterization of produced biosurfactant. JMBS. 2020; 11 (3)
URL: http://biot.modares.ac.ir/article-22-20038-en.html
1- Department of Microbiology and Microbial Biotechnology, Faculty of Biological Science and Technology, Shahid Beheshti University , zibanajmi85@gmail.com
2- Department of Microbiology and Microbial Biotechnology, Faculty of Biological Science and Technology, Shahid Beheshti University
Abstract:   (941 Views)
Although biosurfactants have great advantages over chemical surfactants, their wider industrial applications have been constrained by their relatively high production cost. Using renewable, sustainable and cheap substrates such as different industrial by-products and wastes maybe decrease biosurfactant production costs. Since in different countries, there are a variety of by-products and wastes so use of these substrates rely on their types and concentrations in countries. In addition to hydrocarbon compounds, molasses has been considered as a dominant by-product in Iran. In this study, among 16 crude oil degrading isolates, strain Pseudomonas aeruginosa ZN was selected as an efficient biosurfactant producer by screening methods for detection of biosurfactant producing bacteria. For investigation of molasses concentrations effect on bacterial growth and biosurfactant production, a wide range of molasses concentrations from 2-12% (v/v) were used. This strain was able to grow and produce biosurfactant in all range of molasses concentrations while the best concentrations were 4-6%. Also, at the optimum molasses concentration, reduction of surface tension from 70 to 32-34 mN/m was observed. The concnetrations more than these values decreased the growth and production process. Acid precipitation and solvent extract (ethyl acetate: hexane) methods were carried out for recovery of biosurfactant from the culture broth, then results of spraying on developed TLC and staining fermentation broth without bacterial cells showed the two produced biosurfactants were glycolipid.
Full-Text [PDF 480 kb]   (239 Downloads)    
Article Type: Original Research | Subject: Agricultural Biotechnology
Received: 2017/01/31 | Accepted: 2017/08/14 | Published: 2020/06/9

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author