Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 503-509 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samimi H, Haghpanah V, Irani S, Fallah P, Arefian E, Soleimani M. Determination of ATP-Competitive Inhibitor Drug Toxicity in Anaplastic Thyroid Cancer Based on Cell Characteristics and Three-Dimensional Cell Culture. JMBS 2019; 10 (3) :503-509
URL: http://biot.modares.ac.ir/article-22-23358-en.html
1- Biology Department, Basic Sciences Faculty, Science & Research Branch, Islamic Azad University, Tehran, Iran
2- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
3- Laboratory Science Department, Allied Medicine Faculty, Alborz University of Medical Sciences, Karaj, Iran
4- Microbiology Department, Biology Faculty, College of Science, University of Tehran, Tehran, Iran
5- Hematology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. , soleim_m@modares.ac.ir
Abstract:   (4497 Views)
Aims: Three-dimensional (3D) cell culture systems are important because simulating the physiological microenvironment and representing more similarity to “in vivo” conditions for anticancer drug screening. Taking the advantages of 3D cell culture in the cancer therapy field, we have developed the 3D in vitro anaplastic thyroid cancer (ATC) model for determining the cytotoxic dose of "BI-847325" chemotherapy agent in ATC cell lines with different genetic background.
Materials and Methods: C643 and SW1736 ATC cell lines were grown in alginate scaffold. Beads were incubated in medium for one week. Cells were treated with different doses (1-64μM) of BI-847325 for 24h. The cytotoxic effect of BI-847325 on 3D cultured cell lines was studied by MTT [3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide] assay. The survival rate of alginate-encapsulated cells was analyzed by CFSE (5, 6-Carboxyfluorescein N-hydroxysuccinimidyl ester) staining in effective doses for each of the cell lines.
Findings: Cytotoxic effect of BI-847325 anticancer drug was different for two ATC cell lines. Effective doses of BI-847325 for C643 and SW1736 cell lines were at 25μM and 43μM, respectively. CFSE staining analysis confirmed these data.
Conclusion: Overall, the results of the present study showed that the cytotoxic effect of BI-847325 chemotherapy agent was different for two ATC cell lines. The importance of this subject in regard to the 3D cell culture methods can be useful for researchers in the design of the complementary experience in order to achieve the most appropriate chemotherapy drug with the most effective dose.
Full-Text [PDF 949 kb]   (3300 Downloads)    
Article Type: Original Research | Subject: Pharmaceutical Biotechnology
Received: 2018/07/22 | Accepted: 2019/05/12 | Published: 2019/09/1

References
1. Denaro N, Nigro CL, Russi EG , Merlano MC. The role of chemotherapy and latest emerging target therapies in anaplastic thyroid cancer. Onco Targets Ther. 2013;9(1):1231-41. [Link] [DOI:10.2147/OTT.S46545]
2. Perri F, Pezzullo L, Chiofalo MG, Lastoria S, Di Gennaro F, Scarpati GD, et al. Targeted therapy: A new hope for thyroid carcinomas. Crit Rev Oncoly Hematol. 2015;94(1):55-63. [Link] [DOI:10.1016/j.critrevonc.2014.10.012]
3. Rusconi P, Caiola E, Broggini M. RAS/RAF/MEK inhibitors in oncology. Curr Med Chem. 2012;19(8):1164-76. [Link] [DOI:10.2174/092986712799320510]
4. Patel JN. Cancer pharmacogenomics, challenges in implementation, and patient-focused perspectives. Pharmacogenomics Pers Med. 2016;9:65. [Link] [DOI:10.2147/PGPM.S62918]
5. Smith N, Nucera C. Personalized therapy in patients with anaplastic thyroid cancer: Targeting genetic and epigenetic alterations. J Clin Endocrinol Metab. 2015;100(1):35-42. [Link] [DOI:10.1210/jc.2014-2803]
6. Liu D, Xing J, Trink B, Xing M. BRAF mutation‐selective inhibition of thyroid cancer cells by the novel MEK inhibitor RDEA119 and genetic‐potentiated synergism with the mTOR inhibitor temsirolimus. Int J Cancer. 2010;127(12):2965-73. [Link] [DOI:10.1002/ijc.25304]
7. Liu D, Xing M. Potent inhibition of thyroid cancer cells by the MEK inhibitor PD0325901 and its potentiation by suppression of the PI3K and NF-κB pathways. Thyroid. 2008;18(8):853-64. [Link] [DOI:10.1089/thy.2007.0357]
8. McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul. 2006;46(1):249-79. [Link] [DOI:10.1016/j.advenzreg.2006.01.004]
9. Steelman LS, Chappell WH, Abrams SL, Kempf CR, Long J, Laidler P, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY). 2011;3(3):192-222. [Link] [DOI:10.18632/aging.100296]
10. Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: State of the art. Tissue Eng Part B Rev. 2008;14(1):61-86. [Link] [DOI:10.1089/teb.2007.0150]
11. Dhiman HK, Ray AR, Panda AK. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials. 2005;26(9):979-86. [Link] [DOI:10.1016/j.biomaterials.2004.04.012]
12. Godugu Ch, Patel AR, Desai U, Andey T, Sams A, Singh M. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies. PLoS One. 2013;8(1):e53708. [Link] [DOI:10.1371/journal.pone.0053708]
13. Smith BH, Gazda LS, Conn BL, Jain K, Asina S, Levine DM, et al. Three-dimensional culture of mouse renal carcinoma cells in agarose macrobeads selects for a subpopulation of cells with cancer stem cell or cancer progenitor properties. Cancer Res. 2011;71(3):716-24. [Link] [DOI:10.1158/0008-5472.CAN-10-2254]
14. Onoda N, Nakamura M, Aomatsu N, Noda S, Kashiwagi S, Hirakawa K. Establishment, characterization and comparison of seven authentic anaplastic thyroid cancer cell lines retaining clinical features of the original tumors. World J Surg. 2014;38(3):688-95. [Link] [DOI:10.1007/s00268-013-2409-7]
15. Nagayama Y, Yokoi H, Takeda K, Hasegawa M, Nishihara E, Namba H, et al. Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma in vitro and in vivo. J Clin Endocrinol Metab. 2000;85(11):4081-6. [Link] [DOI:10.1210/jcem.85.11.6941]
16. Reddi HV, Kumar A, Kulstad R. Anaplastic thyroid cancer an overview of genetic variations and treatment modalities. Adv Genom Genet. 2015;2015(5):43-52. [Link] [DOI:10.2147/AGG.S53448]
17. Are Ch, Shaha AR. Anaplastic thyroid carcinoma: Biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol. 2006;13(4):453-64. [Link] [DOI:10.1245/ASO.2006.05.042]
18. Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318-29. [Link] [DOI:10.1093/hmg/ddu749]
19. Haycock JW. 3D cell culture: A review of current approaches and techniques. In: Haycock JW, editor. 3D cell culture: Methods and protocols. Totowa: Humana Press; 2011. pp. 1-15. [Link] [DOI:10.1007/978-1-60761-984-0_1]
20. Liu J, Zhang L, Yang Z, Zhao X. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomed. 2011;6:2143-53. [Link] [DOI:10.2147/IJN.S24038]
21. Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev. 2014;69-70:29-41. [Link] [DOI:10.1016/j.addr.2014.03.001]
22. Liu D, Hou P, Liu Z, Wu G, Xing M. Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res. 2009;69(18):7311-9. [Link] [DOI:10.1158/0008-5472.CAN-09-1077]
23. Pilli T, Prasad KV, Jayarama Sh, Pacini F, Prabhakar BS. Potential utility and limitations of thyroid cancer cell lines as models for studying thyroid cancer. Thyroid. 2009;19(12):1333-42. [Link] [DOI:10.1089/thy.2009.0195]
24. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab. 2008;93(11):4331-41. [Link] [DOI:10.1210/jc.2008-1102]
25. Meireles AM, Preto A, Rocha AS, Rebocho AP, Máximo V, Pereira-Castro I, et al. Molecular and genotypic characterization of human thyroid follicular cell carcinoma-derived cell lines. Thyroid. 2007;17(8):707-15. [Link] [DOI:10.1089/thy.2007.0097]
26. Zhang L, Zhang Y, Mehta A, Boufraqech M, Davis S, Wang J, et al. Dual inhibition of HDAC and EGFR signaling with CUDC-101 induces potent suppression of tumor growth and metastasis in anaplastic thyroid cancer. Oncotarget. 2015;6(11):9073-85. [Link] [DOI:10.18632/oncotarget.3268]
27. Haghpanah V, Fallah P, Tavakoli R, Naderi M, Samimi H, Soleimani M, et al. Antisense-miR-21 enhances differentiation/apoptosis and reduces cancer stemness state on anaplastic thyroid cancer. Tumor Biol. 2016;37(1):1299-308. [Link] [DOI:10.1007/s13277-015-3923-z]
28. Samimi H, Zaki Dizaji M, Ghadami M, Shahzadeh Fazeli A, Khashayar P, Soleimani M, et al. Essential genes in thyroid cancers: Focus on fascin. J Diabetes Metab Disord. 2013;12(1):32. [Link] [DOI:10.1186/2251-6581-12-32]
29. Guerra A, Di Crescenzo V, Garzi A, Cinelli M, Carlomagno Ch, Tonacchera M, et al. Genetic mutations in the treatment of anaplastic thyroid cancer: A systematic review. BMC Surg. 2013;13(Suppl 2):S44. [Link] [DOI:10.1186/1471-2482-13-S2-S44]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.