Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 433-440 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirzaie M. Impact of Hydrophobic Amino Acids in Protein Fold Recognition. JMBS 2019; 10 (3) :433-440
URL: http://biot.modares.ac.ir/article-22-23676-en.html
Applied Mathematics Department, Mathematical Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. , mirzaie@modares.ac.ir
Abstract:   (4275 Views)
Aims: Prediction of three-dimensional structure from a sequence of amino acids is one of the important problems in structural bioinformatics. Proteins select a special structure among many possible conformations in order of seconds. Levinthal paradox expresses that random searches could not be an effective way to form a native structure and a principal mechanism should be available. Reduced alphabet fewer than 20 have been interested in protein structure because it could sufficiently simplify the protein folding problem. It is generally assumed that the native structure form in the lowest free energy among all conformational states. Therefore, it is needed to design a trustworthy potential function that could discriminate protein fold from incorrect ones.
Materials and Methods: Knowledge-based potential functions are one type of energy functions derived from a database of known protein structures. In this study, we introduce a knowledge-based potential and assess the power of five amino acids ALA, LEU, ILE, VAL, and PHE in discrimination of native structure using the reduced model. In the reduced model only the energy between the aforementioned amino acids are calculated.
Finding: The reduced model was evaluated using four criteria. The results indicate that there is no significant difference between the 20- amino acid model and the reduced model.
Conclusion: The presented model indicates that the power of discrimination of native structure is originally from the interaction between the aforementioned amino acids. Therefore, it needed a new strategy to capture the remaining interactions to improve the power of knowledge-based potential function.
Full-Text [PDF 840 kb]   (3011 Downloads)    
Article Type: Original Research | Subject: Bioinformatics
Received: 2018/07/31 | Accepted: 2018/09/25 | Published: 2019/09/21

1. Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181(4096):223-30. [Link] [DOI:10.1126/science.181.4096.223]
2. Zwanzig R, Szabo A, Bagchi B. Levinthal's paradox. Proc Natl Acad Sci USA. 1992;89(1):20-2. [Link] [DOI:10.1073/pnas.89.1.20]
3. Dill KA, Ozkan SB, Weikl TR, Chodera JD, Voelz VA. The protein folding problem: when will it be solved?. Curr Opin Struct Biol. 2007;17(3):342-6. [Link] [DOI:10.1016/j.sbi.2007.06.001]
4. Yang Y, Gao J, Wang J, Heffernan R, Hanson J, Paliwal K4, et al. Sixty-five years of the long march in protein secondary structure prediction: the final stretch? Brief Bioinform. 2018;19(3):482-94. [Link]
5. Tanaka S, Scheraga HA. Medium and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules. 1976;9(6):945-50. [Link] [DOI:10.1021/ma60054a013]
6. Miyazawa S, Jernigan RL. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules. 1985;18(3):534-52. [Link] [DOI:10.1021/ma00145a039]
7. Miyazawa S, Jernigan RL. An empirical energy potential with a reference state for protein fold and sequence recognition. Proteins. 1999;36(3):357-69. https://doi.org/10.1002/(SICI)1097-0134(19990815)36:3<357::AID-PROT10>3.0.CO;2-U [Link] [DOI:10.1002/(SICI)1097-0134(19990815)36:33.0.CO;2-U]
8. Li H, Tang C, Wingreen NS. Nature of driving force for protein folding: a result from analyzing the statistical potential. Phys Rev Lett. 1997;79:765-8. [Link] [DOI:10.1103/PhysRevLett.79.765]
9. Mirzaie M, Sadeghi M. Knowledge-based potentials in protein fold recognition. J Paramed Sci. 2010;1(4):65-75. [Link]
10. Boas FE, Harbury PB. Potential energy functions for protein design. Curr Opin Struct Biol. 2007;17(2):199-204. [Link] [DOI:10.1016/j.sbi.2007.03.006]
11. Lee J, Liwo A, Scheraga HA. Energy-based de novo protein folding by conformational space annealing and an off-lattice united-residue force field: Application to the 10-55 fragment of staphylococcal protein A and to apo calbindin D9K. Proc Natl Acad Sci USA. 1999;96(5):2025-30. [Link] [DOI:10.1073/pnas.96.5.2025]
12. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12(1):7-8. [Link] [DOI:10.1038/nmeth.3213]
13. Emamjomeh A, Goliaei B, Zahiri J, Ebrahimpour R. Predicting protein-protein interactions between human and hepatitis C virus via an ensemble learning method. Mol Biosyst. 2014;10(12):3147-54. [Link] [DOI:10.1039/C4MB00410H]
14. Mirzaie M, Eslahchi C, Pezeshk H, Sadeghi M. A distance-dependent atomic knowledge-based potential and force for discrimination of native structures from decoys. Proteins. 2009;77(2):454-63. [Link] [DOI:10.1002/prot.22457]
15. Mirzaie M, Sadeghi M. Distance-dependent atomic knowledge-based force in protein fold recognition. Proteins. 2012;80(3):683-90. [Link] [DOI:10.1002/prot.24011]
16. Mirzaie M, Sadeghi M. Delaunay-based nonlocal interactions are sufficient and accurate in protein fold recognition. Proteins. 2014;82(3):415-23. [Link] [DOI:10.1002/prot.24407]
17. Wang J, Wang W. A computational approach to simplifying the protein folding alphabet. Nat Struct Biol. 1999;6(11):1033-8. [Link] [DOI:10.1038/14918]
18. Bernal JD. Phase determination in the X-ray diffraction patterns of complex crystals and its application to protein structure. Nature. 1952;169(4311):1007-8. [Link] [DOI:10.1038/1691007a0]
19. Finney JL. Random packings and the structure of simple liquids II. The molecular geometry of simple liquids. Proc Royal Soc A. 1970;319(1539):495. [Link] [DOI:10.1098/rspa.1970.0190]
20. Barber CB, Dobkin DP, Huhdanpaa H. The quickhull algorithm for convex hulls. ACM Trans Math Softw. 1996;22(4):469-83 [Link] [DOI:10.1145/235815.235821]
21. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, et al. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins. 2003;50(3):437-50. [Link] [DOI:10.1002/prot.10286]
22. Sippl MJ. Calculation of conformational ensembles potentials of mean force - an approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol. 1990;213(4):859-83. [Link] [DOI:10.1016/S0022-2836(05)80269-4]
23. Park B, Levitt M. Energy functions that discriminate X-ray and near-native folds from well-constructed decoys. J Mol Biol. 1996;258(2):367-92. [Link] [DOI:10.1006/jmbi.1996.0256]
24. Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997;268(1):209-25. [Link] [DOI:10.1006/jmbi.1997.0959]
25. Simons KT, Ruczinski I, Kooperberg C, Fox BA, Bystroff C, Baker D. Improved recognition of native‐like protein structures using a combination of sequence‐dependent and sequence‐independent features of proteins. Protein. 1999;34(1):82-95. https://doi.org/10.1002/(SICI)1097-0134(19990101)34:1<82::AID-PROT7>3.0.CO;2-A [Link] [DOI:10.1002/(SICI)1097-0134(19990101)34:13.0.CO;2-A]
26. Xia Y, Huang ES, Levitt M, Samudrala R. Ab initio construction of protein tertiary structures using a hierarchical approach. J Mol Biol. 2000;300(1):171-85. [Link] [DOI:10.1006/jmbi.2000.3835]
27. Keasar C, Levitt M. A novel approach to decoy set generation: designing a physical energy function having local minima with native structure characteristics. J Mol Biol. 2003;329(1):159-74. [Link] [DOI:10.1016/S0022-2836(03)00323-1]
28. Levitt M. Accurate modeling of protein conformation by automatic segment matching. J Mol Biol. 1992;226(2):507-33. [Link] [DOI:10.1016/0022-2836(92)90964-L]
29. John B, Sali A. Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res. 2003;31(14):3982-92. [Link] [DOI:10.1093/nar/gkg460]
30. Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, et al. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins. 2007;69 Suppl 8:118-28. [Link] [DOI:10.1002/prot.21636]
31. Deng H, Jia Y, Zhang Y. 3DRobot: Automated Generation of Diverse and Well-packed Protein Structure Decoys. Bioinformatics. 2016;32(3):378-87. [Link] [DOI:10.1093/bioinformatics/btv601]
32. Sankar K, Jia K, Jernigan RL. Knowledge-based entropies improve the identification of native protein structures. Proc Natl Acad Sci USA. 2017;114(11):2928-33. [Link] [DOI:10.1073/pnas.1613331114]
33. Wang X, Zhang D, Huang SY. New knowledge-based scoring function with inclusion of backbone conformational entropies from protein structures. J Chem Inf Model. 2018;58(3):724-32. [Link] [DOI:10.1021/acs.jcim.7b00601]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.