1. Holland TA, Mikos, AG. Biodegradable polymeric scaffolds. Improvements in bone tissue engineering through controlled drug delivery. In: Scheper T, Lee K, Kaplan D, editors. Tissue engineering I. Berlin, Heidelberg: Springer; 2006. p. 161-85. [
Link] [
DOI:10.1007/b137205]
2. Mahdavi Shahri N, Shahabipour F, Moghaddam Matin M, Tavassoli A, Fereidooni M, Moghimi A, et al. Preparation of natural 3D scaffolds for tissue engineering studies. 16th National Conference and 4th International Conference on Biology of Iran; 2010 Sep 14-16; Ferdowsi University of Mashhad - Iranian Association for Biology, Mashhad, Iran. [Persian] [
Link]
3. Chen L, Bai Y, Liao G, Peng E, Wu B, Wang Y, Xie X. Electrospun poly (L-lactide)/poly (ε-caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells. PLoS One. 2013;26;8(8):e71265. [
Link] [
DOI:10.1371/journal.pone.0071265]
4. Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25(5):877-86. [
Link] [
DOI:10.1016/S0142-9612(03)00593-3]
5. Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res Part B Appl Biomater. 2006;78(2):283-90. [
Link] [
DOI:10.1002/jbm.b.30484]
6. Shokrollahi P, Mehmanchi M, Atai M, Omidian H, Shokrolahi F. Effect of interface on mechanical properties and biodegradation of PCL HAp supramolecular nano-composites. J Mater Sci Mater Med. 2014;25(1):23-35. [
Link] [
DOI:10.1007/s10856-013-5039-6]
7. Atyabi SM, Sharifi F, Irani S, Zandi M, Mivehchi H, Nagheh Z. Cell attachment and viability study of PCL nano-fiber modified by cold atmospheric plasma. Cell Biochem Biophys. 2016;74(2):181-90. [
Link] [
DOI:10.1007/s12013-015-0718-1]
8. García-González CA, Barros J, Rey-Rico A, Redondo P, Gómez-Amoza JL, Concheiro A, et al. Antimicrobial properties and osteogenicity of vancomycin-loaded synthetic scaffolds obtained by supercritical foaming. ACS Appl Mater Interfaces. 2018;10(4):3349-60. [
Link] [
DOI:10.1021/acsami.7b17375]
9. Pförringer D, Obermeier A, Kiokekli M, Büchner H, Vogt S, Stemberger A, et al. Antimicrobial formulations of absorbable bone substitute materials as drug carriers based on calcium sulfate. Antimicrob Agents Chemother. 2016;60(7):3897-905. [
Link] [
DOI:10.1128/AAC.00080-16]
10. Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2010;7(43):209-27. [
Link] [
DOI:10.1098/rsif.2009.0379]
11. Bala Balakrishnan P, Gardella L, Forouharshad M, Pellegrino T, Monticelli O. Star poly (ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity. Colloids Surf B Biointerfaces. 2018;161:488-96. [
Link] [
DOI:10.1016/j.colsurfb.2017.11.014]
12. Saffari M, Jokar M, Shajary GR, Piroozmand A, Mousavi GA. Minimum inhibitory concentration of vancomycin in Staphylococcus aureus isolates collected from clinical samples of Shahid Beheshti hospital, kashan during 2009. Feyz J Kashan Univ Med Sci. 2010;14(3):234-41. [Persian] [
Link]
13. Graham DR, Dixon RE, Hughes JM, Thornsberry C. Disk diffusion antimicrobial susceptibility testing for clinical and epidemiologic purposes. Am J Infec Control. 1985;13(6):241-9. [
Link] [
DOI:10.1016/0196-6553(85)90024-0]
14. Luber P, Bartelt E, Genschow E, Wagner J, Hahn H. Comparison of broth microdilution, E test, and agar dilution methods for antibiotic susceptibility testing of Campylobacter jejuni and Campylobacter coli. J Clin Microbiol. 2003;41(3);1062-8. [
Link] [
DOI:10.1128/JCM.41.3.1062-1068.2003]
15. Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods. 2014;105:134-40. [
Link] [
DOI:10.1016/j.mimet.2014.07.024]
16. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-45. [
Link] [
DOI:10.1007/978-1-61779-080-5_20]
17. Ruckh TT, Oldinski RA, Carroll DA, Mikhova K, Bryers JD, Popat KC. Antimicrobial effects of nanofiber poly (caprolactone) tissue scaffolds releasing rifampicin. J Mater Sci Mater Med. 2012;23(6):1411-20. [
Link] [
DOI:10.1007/s10856-012-4609-3]
18. Hassan MI, Sultana N. Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech. 2017;7(4):249. [
Link] [
DOI:10.1007/s13205-017-0889-0]
19. Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol. 2005;156(4):506-14. [
Link] [
DOI:10.1016/j.resmic.2005.01.007]
20. Ali Mirani Z, Fatima A, Urooj S, Aziz M, Khan M, Abbas T. Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Iran J Basic Med Sci. 2018;21(7):760-9. [
Link]
21. Sun L, Lu J, Wang Q, Liu Y, Han F, Yang Y, et al. [Effects of selenium compounds on proliferation, migration and adhesion of HeLa cells]. Wei Sheng Yan Jiu. 2015;44(2):276-8. [
Link]
22. Luo H, Wang F, Bai Y, Chen T, Zheng W. Selenium nanoparticles inhibit the growth of HeLa and MDA-MB-231 cells through induction of S phase arrest. Colloids Surf B Biointerfaces. 2012;94:304-8. [
Link] [
DOI:10.1016/j.colsurfb.2012.02.006]
23. Palizban AA, Sadeghi-Aliabadi H, Abdollahpour F. Effect of cerium lanthanide on Hela and MCF-7 cancer cell growth in the presence of transferring. Res Pharm Sci. 2010;5(2):119-25. [
Link]
24. Sadeghi-Aliabadi H, Minaiyan M, Dabestan A. Cytotoxic evaluation of doxorubicin in combination with simvastatin against human cancer cells. Res Pharm Sci. 2010;5(2):127-33. [
Link]
25. Masters JR. HeLa cells 50 years on: The good, the bad and the ugly. Nat Rev Cancer. 2002;2(4):315-9. [
Link] [
DOI:10.1038/nrc775]