Volume 9, Issue 1 (2018)                   JMBS 2018, 9(1): 131-136 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zeinali F, Homaei A. Antioxidant Enzymes Activity of Superoxide Dismutase in the Avicennia marina from the Persian Gulf and Gulf of Oman in the Presence of the Metal Ions. JMBS 2018; 9 (1) :131-136
URL: http://biot.modares.ac.ir/article-22-24320-en.html
1- Marine Biology Department, Marine Science & Technology Faculty, Hormozgan University, Bandar Abbas, Iran
2- Biochemistry Department, Science Faculty, Hormozgan University, Bandar Abbas, Iran, Biochemistry Department, Science Faculty, Hormozgan University, Bandar Abbas, Iran. Postal Code: 7916193145 , a.homaei@hormozgan.ac.ir
Abstract:   (5017 Views)
Aims: Mangroves are subjected to a range of abiotic stresses, which affect their growth and normal physiological processes. One of the most important modes of enzymatic antioxidant defense against stress caused by reactive oxygen species (ROS) is superoxide dismutase (SOD). The aim of this study was to evaluate the antioxidant enzymes activity of superoxide dismutase in the avicennia marina from the Persian Gulf and Gulf of Oman in the presence of the metal ions.
Materials and Methods: In the present experimental study, which was conducted on the leaf of avicennia marina, the sampling was carried out from two habitats including Khamir port in the Persian Gulf and Sirik in the Gulf of Oman and the treatments were carried out in 3 replications. H2O2 sensitivity test and KCN test were used to determine the SOD type. The data were analyzed, using SPSS 19 software by multivariate analysis of variance and Duncan's multiple range test for comparing the means.
Findings: The type of SOD enzyme was detected as Copper-zinc superoxide dismutase (Cu/Zn-SOD). There was no significant difference between different treatments of metals between two regions, and no interaction was observed between metal factor, concentration, and type of region. A strong inhibitory effect was observed in the presence of HgCl2 solution and a weak inhibitory effect was observed in the presence of ZnSo4, FeSo4, and MgCl2 solutions.
Conclusion: Copper, manganese, and cobalt ions significantly increase the activity of the superoxide dismutase, while monovalent ions such as sodium and potassium have little effect on increasing SOD activity and the activity of the antioxidant enzymes of avicennia marina leaf from Khamir port in the Persian Gulf and Sirik in the Gulf of Oman is not different.
Full-Text [PDF 530 kb]   (3539 Downloads)    
Subject: Agricultural Biotechnology
Received: 2017/04/5 | Accepted: 2017/10/23 | Published: 2018/03/20

References
1. Kon K, Kurokura H, Tongnunui P. Effects of the physical structure of mangrove vegetation on a benthic faunal community. J Exp Mar Biol Ecol. 2010;383(2):171-80. [Link] [DOI:10.1016/j.jembe.2009.11.015]
2. Kathiresan K, Bingham BL. Biology of mangroves and mangrove ecosystems. Adv Mar Biol. 2001;40:81-251. [Link] [DOI:10.1016/S0065-2881(01)40003-4]
3. Jabeen U, Salim A, Abbasi A. Prediction of enzyme-inhibitor interactions in Avicennia marina Cu-Zn ‎superoxide dismutase: Implications of functionally significant residues in the metal binding sites. Pak J Biochem Mol Biol. 2011;44(1):1-7. [Link]
4. Prashanth SR, Sadhasivam V, Parida A. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res. 2008;17(2):281-91. [Link] [DOI:10.1007/s11248-007-9099-6]
5. Wang F, Wu Q, Zhang Z, Chen S, Zhou R. Cloning, expression, and characterization of iron superoxide dismutase in sonneratia alba, a highly salt tolerant mangrove tree. Protein J. 2013;32(4):259-65. [Link] [DOI:10.1007/s10930-013-9482-5]
6. Bafana A, Dutt S, Kumar S, Ahuja PS. Superoxide dismutase: An industrial perspective. Crit Rev Biotechnol. 2011;31(1):65-76. [Link] [DOI:10.3109/07388551.2010.490937]
7. Wang Y, Osatomi K, Nagatomo Y, Yoshida A, Hara K. Purification, molecular cloning, and some properties of a manganese-containing superoxide dismutase from Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol. 2011;158(4):289-96. [Link] [DOI:10.1016/j.cbpb.2010.12.007]
8. Anju A, Jeswin J, Thomas PC, Paulton MP, Vijayan KK. Molecular cloning, characterization and expression analysis of cytoplasmic Cu/Zn-superoxide dismutase (SOD) from pearl oyster Pinctada fucata. Fish Shellfish Immunol. 2013;34(3):946-50. [Link] [DOI:10.1016/j.fsi.2012.12.024]
9. Huang JK, Wen L, Ma H, Huang ZX, Lin CT. Biochemical characterization of a cambialistic superoxide dismutase isozyme from diatom Thallassiosira weissflogii: Cloning, expression, and enzyme stability. J Agric Food Chem. 2005;53(16):6319-25. [Link] [DOI:10.1021/jf050701l]
10. McCord JM, Fridovich I. Superoxide dismutase, an enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049-55. [Link]
11. Gonzalez M, Romestand B, Fievet J, Huvet A, Lebart MC, Gueguen Y, et al. Evidence in oyster of a plasma extracellular superoxide dismutase which binds LPS. Biochem Biophys Res Commun. 2005;338(2):1089-97. [Link] [DOI:10.1016/j.bbrc.2005.10.075]
12. Marques D, Esteves AI, Almeida M, Xavier J, Humanes M. Superoxide dismutase in the marine sponge Cliona celata. Mar Biol. 2008;153(5):807-13. [Link] [DOI:10.1007/s00227-007-0853-3]
13. Zhu Y, Wang G, Ni H, Xiao A, Cai H. Cloning and characterization of a new manganese superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3. World J Microbiol Biotechnol. 2014;30(4):1347-57. [Link] [DOI:10.1007/s11274-013-1536-5]
14. MacFarlane GR, Pulkownik A, Burchett MD. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk) Vierh: Biological indication potential. Environ Pollut. 2003;123(1):139-51. [Link] [DOI:10.1016/S0269-7491(02)00342-1]
15. Bowler C, Montagu MV, Inze D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol. 1992;43:83-116. [Link] [DOI:10.1146/annurev.pp.43.060192.000503]
16. Riordan JF. The role of metals in enzyme activity. Ann Clin Lab Sci. 1977;7(2):119-29. [Link]
17. Chandran R, Sivakumar AA, Mohandass S, Aruchami M. Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica. Comp Biochem Physiol C Toxicol Pharmacol. 2005;140(3-4):422-6. [Link] [DOI:10.1016/j.cca.2005.04.007]
18. Sinha R, Khare SK. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front Microbiol. 2014;5:165. [Link] [DOI:10.3389/fmicb.2014.00165]
19. Kanematsu S, Asada K. CuZn-superoxide dismutases from the fern Equisetum arvense and the green alga Spirogyra sp.: Occurrence of chloroplast and cytosol types of enzyme. Plant Cell Physiol. 1989;30(5):717-27. [Link]
20. Takemura T, Hanagata N, Dubinsky Z, Karube I. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza. Trees. 2002;16(2-3):94-9. [Link] [DOI:10.1007/s00468-001-0154-2]
21. Okamoto OK, Asano CS, Aidar E, Colepicolo P. Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis (prasinophyceae) 1. J Phycol. 1996;32(1):74-9. [Link] [DOI:10.1111/j.0022-3646.1996.00074.x]
22. Miura T, Abe F, Inoue A, Usami R, Horikoshi K. Superoxide dismutase is involved in high tolerance to copper in the deep-sea yeast, Cryptococcus sp. N6. Biotechnol Lett. 2002;24(13):1069-74. [Link] [DOI:10.1023/A:1016082530108]
23. Okamoto OK, Colepicolo P. Response of superoxide dismutase to pollutant metal stress in the marine dinoflagellate Gonyaulax polyedra. Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol. 1998;119(1):67-73. [Link] [DOI:10.1016/S0742-8413(97)00192-8]
24. Okamoto OK, Pinto E, Latorre LR, Bechara EJ, Colepicolo P. Antioxidant modulation in response to ‎metal-induced oxidative stress in algal chloroplasts. Arch Environ Contam Toxicol. 2001;40(1):18-24. [Link] [DOI:10.1007/s002440010144]
25. MacFarlane GR, Burchett MD. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull. 2001;42(3):233-40. [Link] [DOI:10.1016/S0025-326X(00)00147-8]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.