Volume 9, Issue 4 (2018)                   JMBS 2018, 9(4): 565-570 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yolmeh M, Khamiri M, Ghaemi E, RamezanPour S. Antimicrobial Activity of Carotenoid Pigments Extracted from Micrococcus roseus. JMBS 2018; 9 (4) :565-570
URL: http://biot.modares.ac.ir/article-22-24335-en.html
1- Food Sciences & Technology Department, Food Sciences Faculty, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran, Gorgan University of Agricultural Sciences & Natural Resources, Shahid Beheshti Street, Gorgan, Iran. Postal Code: 4913815739 , Mahmud.yolmeh@yahoo.com
2- Food Sciences & Technology Department, Food Sciences Faculty, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran
3- Microbiology Department, Golestan University of Medical Sciences, Gorgan, Iran
4- Plant Breeding & Biotechnology Department, Plant Production Faculty, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran
Abstract:   (4843 Views)
Aims: Carotenoids are pigments widely used in the food industry. The aim of this study was to evaluate the antimicrobial effect of pigment extracted from Micrococcus roseus.
Materials and Methods: In this experimental study, Micrococcus roseus cells were settled by centrifugation, and 10ml acetone was added and they were homogenized by homogenizer. Then, homogenized suspension was centrifuged, the supernatant was collected, and carotenoid pigments were extracted with equal volume of petroleum ether. After filtration of pigmented solution, the solution was concentrated by rotary evaporator and, then, it was converted to powder by freeze dryer. Antimicrobial activity was evaluated by disc diffusion method and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined, using the agar dilution method. For statistical analysis, Tukey test and Minitab 16 statistical software were used.
Findings: Pigment extracted from Micrococcus roseus influenced the growth of all tested bacteria; Bacillus cereus and Salmonella enteritidis had the highest (12.4mm) and lowest (10.9mm) sensitivity, respectively, to pigment extracted from Micrococcus roseus in 5mg. Salmonella enteritidis had the highest MIC (64mg/mL) between the tested bacteria, but MBC was not observed for Salmonella enteritidis at the tested pigment extracted from Micrococcus roseus concentrations. The antimicrobial effect of extracted pigment on gram-positive bacteria was higher than gram-negative bacteria.
Conclusion: The extracted pigment from Micrococcus roseus is natural and has antimicrobial activity. The antimicrobial effect of extracted pigment on gram-positive bacteria is higher than gram-negative bacteria.
Full-Text [PDF 464 kb]   (2913 Downloads)    
Subject: Agricultural Biotechnology
Received: 2017/04/4 | Accepted: 2017/09/21 | Published: 2018/12/21

1. Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J. Terpenoids: Natural inhibitors of NF-kappaBsignaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci. 2008;65(19):2979-99. [Link] [DOI:10.1007/s00018-008-8103-5]
2. Debbab A, Aly AH, Lin WH, Proksch P. Bioactive compounds from marine bacteria and fungi. Microb Biotechnol. 2010;3(5):544-63. [Link] [DOI:10.1111/j.1751-7915.2010.00179.x]
3. Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Chidambara Murthy KN, et al. Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality?. Trends Food Sci Technol. 2005;16(9):389-406. [Link] [DOI:10.1016/j.tifs.2005.02.006]
4. Frengova GI, Beshkova DM. Carotenoids from rhodotorula and phaffia: Yeasts of biotechnological importance. J Ind Microbiol Biotechnol. 2009;36(2):163-80. [Link] [DOI:10.1007/s10295-008-0492-9]
5. Kim CH, Kim SW, Hong SI. An integrated fermentation-separation process for the production of red pigment by Serratia sp. KH-95. Process Biochem. 1999;35(5):485-90. [Link] [DOI:10.1016/S0032-9592(99)00091-6]
6. Venil CK, Zakaria ZA, Ahmad WA. Bacterial pigments and their applications. Process Biochem. 2013;48(7):1065-79. [Link] [DOI:10.1016/j.procbio.2013.06.006]
7. Mehrabi M, Nazemi A, Nasrollahi A. Isolation and molecular identification of pigment producing microorganisms and acute toxicity of pigments. J Microb Biotechnol. 2011;3(9):19-28. [Persian] [Link]
8. Kumari HP, Naidu KA, Vishwanatha S, Narasimhamurthy K, Vijayalakshmi G. Safety evaluation of Monascus purpureus red mould rice in albino rats. Food Chem Toxicol. 2009;47(8):1739-46. [Link] [DOI:10.1016/j.fct.2009.04.038]
9. Wang M, Tsao R, Zhang S, Dong Z, Yang R, Gong J, et al. Antioxidant activity, mutagenicity/anti-mutagenicity, and clastogenicity/anti-clastogenicity of lutein from marigold flowers. Food Chem Toxicol. 2006;44(9):1522-9. [Link] [DOI:10.1016/j.fct.2006.04.005]
10. Hernández-Ortega M, Ortiz-Moreno A, Hernández-Navarro MD, Chamorro-Cevallos G, Dorantes-Alvarez L, Necoechea-Mondragón H. Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (capsicum annuum L.). J Biomed Biotechnol. 2012;2012:524019. [Link]
11. Han S, Yang Y. Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments. 2005;64(2):157-61. [Link] [DOI:10.1016/j.dyepig.2004.05.008]
12. Siva R, Palackan MG, Maimoon L, Geetha T, Bhakta D, Balamurugan P, et al. Evaluation of antibacterial, antifungal, and antioxidant properties of some food dyes. Food Sci Biotechnol. 2011;20(1):7-13. [Link] [DOI:10.1007/s10068-011-0002-0]
13. Yolmeh M, Habibi Najafi MB, Shakouri S, Hosseini F. Comparing antibacterial and antioxidant activity of annatto dye extracted by conventional and ultrasound-assisted methods. Zahedan J Res Med Sci. 2015;17(7):e1020. [Link] [DOI:10.17795/zjrms1020]
14. Nam KN, Park YM, Jung HJ, Lee JY, Min BD, Park SU, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol. 2010;648(1-3):110-6. [Link] [DOI:10.1016/j.ejphar.2010.09.003]
15. Da Silva JPL, De Melo Franco BDG. Application of oregano essential oil against salmonella enteritidis in mayonnaise salad. Int J Food Sci Nutr Eng. 2012;2(5):70-5. [Link] [DOI:10.5923/j.food.20120205.01]
16. Burt S. Essential oils: Their antibacterial properties and potentional applications in foods, a review. Int J Food Microbiol. 2004;94(3):223-53. [Link] [DOI:10.1016/j.ijfoodmicro.2004.03.022]
17. AL-Wandawi H. Carotenoid biosynthesis in micrcoccus luteus grown in the presence of different concentrations of nicotine. Int J Pure Appl Sci Technol. 2014;24(1):31-41. [Link]
18. Bhosale P, Gadren R. Production of β-carotene by a mutant of Rhodotorula glutinis. Appl Microbiol Biotechnol. 2001;55(4):423-27. [Link] [DOI:10.1007/s002530000570]
19. Skaltsa HD, Demetzos C, Lazari D, Sokovic M. Essential oil analysis and antimicrobial activity of eight Stachys species from Greece. Phytochemistry. 2003;64(3):743-52. [Link] [DOI:10.1016/S0031-9422(03)00386-8]
20. Manenzhe NJ, Potgieter N, Van Ree T. Compostion and antimicrobial activities of volatile components of Lippia javanica. Phytochemistry. 2004;65(16):2333-6. [Link] [DOI:10.1016/j.phytochem.2004.07.020]
21. Yolmeh M, Habibi Najafi MB, Farhoosh R, Hosseini F. Evaluation of the antibacterial activity of annatto dye on some pathogenic bacteria. Qom Univ Med Sci J. 2014;8(4):53-7. [Persian] [Link]
22. Umadevi K, Krishnaveni M. Antibacterial activity of pigment produced from Micrococcus luteus KF532949. Int J Chem Anal Sci. 2013;4(3):149-52. [Link] [DOI:10.1016/j.ijcas.2013.08.008]
23. Manimala MRA, Murugesan R. In vitro antioxidant and antimicrobial activity of carotenoid pigment extracted from Sporobolomyces sp. isolated from natural source. J Appl Nat Sci. 2014;6(2):649-53. [Link] [DOI:10.31018/jans.v6i2.511]
24. Galindo-Cuspinera V, Westhoff DC, Rankin SA. Antimicrobial properties of commercial annatto extracts against selected pathogenic, lactic acid and spoilage microorganisms. J Food Prot. 2003;66(6):1074-8. [Link] [DOI:10.4315/0362-028X-66.6.1074]
25. Smith-Palmer A, Stewart J, Fyfe L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol. 1998;26(2):118-22. [Link] [DOI:10.1046/j.1472-765X.1998.00303.x]
26. McKeegan KS, Borges-Walmsley MI, Walmsley AR. Microbial and viral drug resistance mechanisms. Tends Microbiol. 2002;10(10 Suppl):S8-14. [Link] [DOI:10.1016/S0966-842X(02)02429-0]
27. Galindo-Cuspinera V. Volatile composition and antimicrobial properties of commercial annatto (bixa orellana l.) extracts, a natural food colorant. Maryland: University of Maryland; 2003. [Link]
28. Low JC, Donachie W. A review of Listeria monocytogenes and listeriosis. Vet J. 1997;153(1):9-29. [Link] [DOI:10.1016/S1090-0233(97)80005-6]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.