Volume 9, Issue 3 (2018)                   JMBS 2018, 9(3): 317-323 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rashedi H, Arjmand S, Rashedi H, Ranaei Siadat S, Pouryaqubi M. Detection of DNA Aptamer with High Affinity against Hepatitis B Surface Antigen by Systematic Evolution of Ligands by Exponential Enrichment. JMBS 2018; 9 (3) :317-323
URL: http://biot.modares.ac.ir/article-22-24336-en.html
1- Biotechnology Department, Chemical Engineering Faculty, University of Tehran, Tehran, Iran
2- Protein Research Center, Shahid Beheshti University, Tehran, Iran
3- Biotechnology Department, Energy & New Technologies Faculty, Shahid Beheshti University, Tehran, Iran, Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran, Postal code:1983969411 , o_ranaei@sbu.ac.ir
4- Nanobiotechnology Department, Biological Science Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (10183 Views)
Aims: Hepatitis B is a viral infection, which can cause serious liver problems. Hepatitis B surface antigen (HBsAg), which is produced as recombinant, is used to produce the Hepatitis B vaccine. The aim of this study was to detect DNA aptamer with high affinity against HBsAg by Systematic Evolution of Ligands by Exponential Enrichment (SELEX).
Materials and Methods: In the present experimental study, SELEX method was used to isolate and sequence a DNA aptamer with high affinity against HBsAg. The affinity of this monoclonal nucleotide sequence was calculated by fluorimetric method. The difference of initial absorption and residual value as a measure for the number of associated sequences were calculated with Prism 5 software by nonlinear regression method, Binding-saturation and one site-total model were performed, and the amount of electron affinity (Kd) was determined.
Findings: After performing the SELEX procedure and evaluating the amplified sequence with agarose gel, the result was positive control sample containing a bond in the range of 72nucleotides, indicating successful amplification of the selected sequence, using selective primers. During cloning steps from existing colonies of PCR reaction with aptamer specific primers, the presence of aptamer was confirmed in Escherichia coli bacteria. The reported aptamer had a stable secondary structure with a free energy of ΔG of less than -6.9kJ and Tm higher than 45°C.
Conclusion: The selected DNA aptamer has a high affinity to the target protein (HbsAg) and can be considered as an alternative for mAbs in chromatography column.
Full-Text [PDF 553 kb]   (4287 Downloads)    
Subject: Agricultural Biotechnology
Received: 2016/04/18 | Accepted: 2016/07/17 | Published: 2018/09/22

References
1. Huang Y, Bi J, Zhang Y, Zhou W, Li Y, Zhao L, Su Z. A highly efficient integrated chromatographic procedure for the purification of recombinant hepatitis B surface antigen from Hansenula polymorpha. Protein Expr Purif. 2007;56(2):301-10. [Link] [DOI:10.1016/j.pep.2007.08.009]
2. Tleugabulova D, Falcón V, Sewer M, Pentón E. Aggregation of recombinant hepatitis B surface antigen in Pichia pastoris. J chromatogr B Biome Sci Appl. 1998;716(1-2):209-19. [Link]
3. Safarik I, Safarikova M. Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol. 2004;2:7. [Link] [DOI:10.1186/1477-044X-2-7]
4. Janson JC, editor. Protein purification: Principles, high resolution methods, and applications. Volume 54. 3th Edition. Hoboken: Wiley-VCH; 2012. [Link]
5. Zhao Q, Wu M, Chris Le X, Li XF. Applications of aptamer affinity chromatography. TrAC Trends Anal Chem. 2012;41:46-57. [Link] [DOI:10.1016/j.trac.2012.08.005]
6. Tombelli S, Mascini M. Aptamers as molecular tools for bioanalytical methods. Curr Opin Mol Ther. 2009;11(2):179-88. [Link]
7. Deng Q, Watson CJ, Kennedy RT. Aptamer affinity chromatography for rapid assay of adenosine in microdialysis samples collected in vivo. J Chromatogr A. 2003;1005(1-2):123-30. [Link] [DOI:10.1016/S0021-9673(03)00812-4]
8. Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv. 2015;33(6 pt2):1141-61. [Link] [DOI:10.1016/j.biotechadv.2015.02.008]
9. Connor AC, McGown LB. Aptamer stationary phase for protein capture in affinity capillary chromatography. J Chromatogr A. 2006;1111(2):115-9. [Link] [DOI:10.1016/j.chroma.2005.05.012]
10. Ravelet C, Peyrin E. Aptamers in affinity separations: Stationary separation. In: Li Y, Lu Y, editors. Functional nucleic acids for analytical applications, integrated analytical systems. New York: Springer; 2009. pp. 271-86. [Link] [DOI:10.1007/978-0-387-73711-9_10]
11. Proske D, Blank M, Buhmann R, Resch A. Aptamers--basic research, drug development, and clinical applications. Appl Microbiol Biotechnol. 2005;69(4):367-74. [Link] [DOI:10.1007/s00253-005-0193-5]
12. Smith BJ. SDS Polyacrylamide Gel Electrophoresis of Proteins. Methods Mol Biol. 1984;1:41-55. [Link] [DOI:10.1385/0-89603-062-8:41]
13. Stoltenburg R, Reinemann C, Strehlitz B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381-403. [Link] [DOI:10.1016/j.bioeng.2007.06.001]
14. Liu Y, Wang C, Li F, Shen S, Tyrrell DL, Le XC, Li XF. DNase-mediated single-cycle selection of aptamers for proteins blotted on a membrane. Anal Chem. 2012;84(18):7603-6. [Link] [DOI:10.1021/ac302047e]
15. Svobodova, M, Pinto A, Nadal P, O'Sullivan CK. Comparison of different methods for generation of single-stranded DNA for SELEX processes. Anal Bioanal Chem. 2012;404(3), 835-842. [Link] [DOI:10.1007/s00216-012-6183-4]
16. Marimuthu C, Tang TH, Tominaga J, Tan SC, Gopinath SC. Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst. 2012;137(6):1307-15. [Link] [DOI:10.1039/c2an15905h]
17. Tautz D, Renz M. An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Anal Biochem. 1983;132(1):14-9. [Link] [DOI:10.1016/0003-2697(83)90419-0]
18. Liu J, Yang Y, Hu B, Ma ZY, Huang HP, Yu Y, et al. Development of HBsAg-binding aptamers that bind HepG2. 2.15 cells via HBV surface antigen. Virol Sin. 2010;25(1):27-35. [Link] [DOI:10.1007/s12250-010-3091-7]
19. Xi Z, Huang R, Li Z, He N, Wang T, Su E, et al. Selection of HBsAg-specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection. ACS appl mater interfaces. 2015;7(21):11215-23. [Link] [DOI:10.1021/acsami.5b01180]
20. Orabi A, Bieringer M, Geerlof A, Bruss V. An aptamer against the matrix binding domain on the hepatitis B virus capsid impairs virion formation. J virol. 2015;89(18):9281-7. [Link] [DOI:10.1128/JVI.00466-15]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.