Volume 9, Issue 2 (2018)                   JMBS 2018, 9(2): 201-205 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimi Samani S, Asghari S, Naderimanesh H, Hoseinkhani S. Optimization of Preparation of PEG-PLGA Nanoparticles by Solvent Evaporation Method. JMBS 2018; 9 (2) :201-205
URL: http://biot.modares.ac.ir/article-22-24338-en.html
1- Biology Department, Basic Sciences Faculty, University of Guilan, Rasht, Iran
2- Biology Department, Basic Sciences Faculty, University of Guilan, Rasht, Iran, Basic Sciences Faculty, University of Guilan, Namjoo Street, Rasht, Iran. Postal Code: 4193833697 , sm_asghari@guilan.ac.ir
3- Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
4- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (10395 Views)
Aims: Among different nanosystems, polymeric nanoparticles are highly regarded because of their potential to be used as drug carrier. poly(ethylene glycol)-block-lactide-glycolide (PEG-PLGA) is an amphiphilic copolymer that can be used to carry water-soluble drugs and drugs and molecules insoluble in water. PEG-PLGA polymeric nanoparticles can reduce renal filtration and drug toxicity; they are also biodegradable and biocompatible. The aim of this study was to optimize preparation of PEG-PLGA nanoparticles by solvent evaporation method.
Materials and Methods: In the present experimental study, PEG-PLGA nanoparticles with a diameter of 150nm and a zeta potential of -10 were prepared by solvent evaporation method. Then, the physicochemical properties of nanoparticles were carefully examined.
Findings: By increasing the polymer concentration and the percentage of polyvinyl alcohol, particle size increased. The production of nanoparticles with a concentration of 5mg/ml copolymer, a 2% w/v polyvinyl alcohol concentration, and in a 12:1 volume ratio showed the best size and superficial load. Morphologically, the nanoparticles were structurally similar and spherical. According to the FTIR spectrum, the peak in 2900-13000cm region was in accordance with the tensile bond C-H in CH3. A strong peak in 1760cm-1 was related to the tensile-CO that showed the copolymer formation.
Conclusion: The production of PEG-PLGA nanoparticles in a concentration of 5mg/ml copolymer, 2% w/v of polyvinyl alcohol concentration, and in a 12:1 volume ratio shows the best size and superficial load; also, the nanoparticles are structurally similar and spherical.
 
Full-Text [PDF 475 kb]   (3493 Downloads)    
Subject: Agricultural Biotechnology
Received: 2018/08/21 | Accepted: 2018/08/21 | Published: 2018/10/2

References
1. Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J pharm. 2014;463(2):127-36. [Link] [DOI:10.1016/j.ijpharm.2013.12.015]
2. Hamid Akash MS, Rehman K, Chen S. Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polym Rev. 2015;55(3):371-406. [Link] [DOI:10.1080/15583724.2014.995806]
3. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487-95. [Link] [DOI:10.1021/mp800032f]
4. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology. 2010;151(2):458-6. [Link] [DOI:10.1210/en.2009-1082]
5. Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006. 5(1):561-73. [Link]
6. Khalil NM, Do Nascimento TC, Casa DM, Dalmolin LF, De Mattos AC, Hoss I, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces. 2013;101:353-60. [Link] [DOI:10.1016/j.colsurfb.2012.06.024]
7. Yoo JW, Chambers E, Mitragotri S. Factors that control the circulation time of nanoparticles in blood: Challenges, solutions and future prospects. Curr Pharm Des. 2010;16(21):2298-307. [Link] [DOI:10.2174/138161210791920496]
8. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol Rev. 2001;53(2):283-318. [Link]
9. Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545-61. [Link] [DOI:10.1039/c2cs15327k]
10. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnolgy. 2011;9(55):1-11. [Link] [DOI:10.1186/1477-3155-9-55]
11. Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713-22. [Link] [DOI:10.1016/j.biomaterials.2004.07.050]
12. Prencipe G, Tabakman SM, Welsher K, Liu Z, Goodwin AP, Zhang L, et al. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc. 2009;131(13):4783-7. [Link] [DOI:10.1021/ja809086q]
13. Bala I, Hariharan S, Kumar MN. PLGA nanoparticles in drug delivery: The state of the art. Crit Rev Ther Drug Carrier Syst. 2004;21(5):387-422. [Link] [DOI:10.1615/CritRevTherDrugCarrierSyst.v21.i5.20]
14. Li Y, Pei Y, Zhang X, Gu Z, Zhou Z, Yuan W, et al. PEGylated PLGA nanoparticles as protein carriers: Synthesis, preparation and biodistribution in rats. J Control Release. 2001;71(2):203-11. [Link] [DOI:10.1016/S0168-3659(01)00218-8]
15. Li J, Feng L, Fan L, Zha Y, Guo L, Zhang Q, et al. Targeting the brain with PEG–PLGA nanoparticles modified with phage-displayed peptides. Biomaterials. 2011;32(21):4943-50. [Link] [DOI:10.1016/j.biomaterials.2011.03.031]
16. Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32(32):8281-90. [Link] [DOI:10.1016/j.biomaterials.2011.07.032]
17. Yang A, Yang L, Liu W, Li Z, Xu H, Yang X, et al. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: Preparation and in vitro evaluation. Int J Pharm. 2007;331(1):123-32. [Link] [DOI:10.1016/j.ijpharm.2006.09.015]
18. Hosseininasab S, Pashaei-Asl R, Khandaghi AA, Nasrabadi HT, Nejati-Koshki K, Akbarzadeh A, et al. Synthesis characterization, and in vitro studies of PLGA–PEG nanoparticles for oral insulin delivery. Chem biol Drug Des. 2014;84(3):307-15. [Link] [DOI:10.1111/cbdd.12318]
19. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1):1-20. [Link] [DOI:10.1016/S0168-3659(00)00339-4]
20. Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998;24(12):1113-28. [Link] [DOI:10.3109/03639049809108571]
21. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1-18. [Link] [DOI:10.1016/j.colsurfb.2009.09.001]
22. Prasad Rao J, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887-913. [Link] [DOI:10.1016/j.progpolymsci.2011.01.001]
23. Noori Koopaei M, Khoshayand MR, Mostafavi SH, Amini M, Khorramizadeh MR, Jeddi Tehrani M, et al. Docetaxel loaded PEG-PLGA nanoparticles: Optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect. Iran J Pharm Res. 2014;13(3):819-33. [Link]
24. McGinity JW, O'Donnell PB. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev. 1997;28(1):25-42. [Link] [DOI:10.1016/S0169-409X(97)00049-5]
25. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90(3):261-80. [Link] [DOI:10.1016/S0168-3659(03)00194-9]
26. Bannunah AZ, Vllasaliu D, Lord J, Stolnik S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: Effect of size and surface charge. Mol Pharmaceutics. 2014;11(12):4363-73. [Link] [DOI:10.1021/mp500439c]
27. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1-16. [Link] [DOI:10.1146/annurev-bioeng-071811-150124]
28. Jenkins SI, Weinberg D, Al-Shakli AF, Fernandes AR, Yiu HHP, Telling ND, et al. 'Stealth' nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics. J Control Release. 2016;224:136-45. [Link] [DOI:10.1016/j.jconrel.2016.01.013]
29. Lane LA, Qian X, Smith AM, Nie S. Physical chemistry of nanomedicine: Understanding the complex behaviors of nanoparticles in vivo. Annu Rev Phys Chem. 2015;66:521-47. [Link] [DOI:10.1146/annurev-physchem-040513-103718]
30. Kulkarni SA, Feng SS. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 2013;30(10):2512-22. [Link] [DOI:10.1007/s11095-012-0958-3]
31. Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: Size matters. J Nanobiotechnology. 2014;12(5):1-11. [Link] [DOI:10.1186/1477-3155-12-5]
32. De Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine. 2008. 3(2):133-149. [Link] [DOI:10.2147/IJN.S596]
33. Bermudez H, Brannan AK, Hammer DA, Bates FS, Discher DE. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules. 2002;35(21):8203-8. [Link] [DOI:10.1021/ma020669l]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.