1. Weizmann Y, Lim J, Chenoweth DM, Swager TM. Regiospecific synthesis of Au-nanorod/SWCNT/Au-nanorod heterojunctions. Nano Lett. 2010;10(7):2466-9. [
Link] [
DOI:10.1021/nl1008025]
2. Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA III, Rothemund PW, et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol. 2010;5(1):61-6. [
Link] [
DOI:10.1038/nnano.2009.311]
3. He Y, Liu H, Chen Y, Tian Y, Deng Z, Ko SH, et al. DNA-based nanofabrications. Microsc Res Tech. 2007;70(6):522-9. [
Link] [
DOI:10.1002/jemt.20475]
4. Lin C, Liu Y, Yan H. Designer DNA nanoarchitectures. Biochemistry. 2009;48(8):1663-74. [
Link] [
DOI:10.1021/bi802324w]
5. Tørring T, Voigt NV, Nangreave J, Yan H, Gothelf KV. DNA origami: A quantum leap for self-assembly of complex structures. Chem Soc Rev. 2011;40(12):5636-46. [
Link] [
DOI:10.1039/c1cs15057j]
6. Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297-302. [
Link] [
DOI:10.1038/nature04586]
7. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009;459(7243):73-6. [
Link] [
DOI:10.1038/nature07971]
8. Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 2009;9(6):2445-7. [
Link] [
DOI:10.1021/nl901165f]
9. Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 2009;459(7245):414-8. [
Link] [
DOI:10.1038/nature08016]
10. Dietz H, Douglas SM, Shih WM. Folding DNA into twisted and curved nanoscale shapes. Science. 2009;325(5941):725-30. [
Link] [
DOI:10.1126/science.1174251]
11. Ke Y, Douglas SM, Liu M, Sharma J, Cheng A, Leung A, et al. Multilayer DNA origami packed on a square lattice. J Am Chem Soc. 2009;131(43):15903-8. [
Link] [
DOI:10.1021/ja906381y]
12. Liedl T, Högberg B, Tytell J, Ingber DE, Shih WM. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat Nanotechnol. 2010;5(7):520-4. [
Link] [
DOI:10.1038/nnano.2010.107]
13. Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. DNA origami with complex curvatures in three-dimensional space. Science. 2011;332(6027):342-6. [
Link] [
DOI:10.1126/science.1202998]
14. Holliday R. A mechanism for gene conversion in fungi. Genet Res. 1964;5(2):282-304. [
Link] [
DOI:10.1017/S0016672300001233]
15. Gill P, Ranjbar B, Saber R, Khajeh K, Mohammadian M. Biomolecular and structural analyses of cauliflower-like DNAs by ultraviolet, circular dichroism, and fluorescence spectroscopies in comparison with natural DNA. J Biomol Tech. 2011;22(2):60-6. [
Link]
16. Shen X, Song C, Wang J, Shi D, Wang Z, Liu N, et al. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc. 2012;134(1):146-9. [
Link] [
DOI:10.1021/ja209861x]
17. Seeman NC. DNA in a material world. Nature. 2003;421(6921):427-31. [
Link] [
DOI:10.1038/nature01406]
18. Seeman NC. Nanomaterials based on DNA. Annu Rev Biochem. 2010;79:65-87. [
Link] [
DOI:10.1146/annurev-biochem-060308-102244]
19. Li M, Bhiladvala RB, Morrow TJ, Sioss JA, Lew KK, Redwing JM, et al. Bottom-up assembly of large-area nanowire resonator arrays. Nat Nanotechnol. 2008;3:88-92. [
Link] [
DOI:10.1038/nnano.2008.26]
20. Gu Q, Cheng C, Gonela R, Suryanarayanan S, Anabathula S, Dai K, et al. DNA nanowire fabrication. Nanotechnology. 2006;17(1):14-25. [
Link] [
DOI:10.1088/0957-4484/17/1/R02]
21. Maeda Y, Tabata H, Kawai T. Tow-dimensional assembly of gold nanoparitcles with a DNA network template. Appl Phys Lett. 2001;79:1181. [
Link] [
DOI:10.1063/1.1396630]
22. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56-8. [
Link] [
DOI:10.1038/354056a0]
23. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603-5. [
Link] [
DOI:10.1038/363603a0]
24. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993;363:605-7. [
Link] [
DOI:10.1038/363605a0]
25. Dwyer C, Guthold M, Falvo M, Washburn S, Superfine R, Erie D. DNA-functionalized single-walled carbon nanotubes. Nanotechnology. 2002;13(5):601-4. [
Link] [
DOI:10.1088/0957-4484/13/5/311]
26. Baker SE, Cai W, Lasseter TL, Weidkamp KP, Hamers RJ. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano Lett. 2002;2(12):1413-7. [
Link] [
DOI:10.1021/nl025729f]
27. Weizmann Y, Chenoweth DM, Swager TM. Addressable terminally linked DNA-CNT nanowires. J Am Chem Soc. 2010;132(40):14009-11. [
Link] [
DOI:10.1021/ja106352y]
28. Williams KA, Veenhuizen PT, De La Torre BG, Eritja R, Dekker C. Nanotechnology: Carbon nanotubes with DNA recognition. Nature. 2002;420(6917):761. [
Link] [
DOI:10.1038/420761a]
29. Li S, He P, Dong J, Guo Z, Dai L. DNA-directed self-assembling of carbon nanotubes. J Am Chem Soc. 2005;127(1):14-5. [
Link] [
DOI:10.1021/ja0446045]
30. Chen Y, Liu H, Ye T, Kim J, Mao C. DNA-directed assembly of single-wall carbon nanotubes. J Am Chem Soc. 2007;129(28):8696-7. [
Link] [
DOI:10.1021/ja072838t]
31. Li X, Peng Y, Ren J, Qu X. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. Proc Natl Acad Sci U S A. 2006;103(52):19658-63. [
Link] [
DOI:10.1073/pnas.0607245103]
32. Li X, Peng Y, Qu X. Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res. 2006;34(13):3670-6. [
Link] [
DOI:10.1093/nar/gkl513]
33. Zhao C, Ren J, Qu X. Single-walled carbon nanotubes binding to human telomeric i-motif DNA under molecular-crowding conditions: More water molecules released. Chemistry. 2008;14(18):5435-9. [
Link] [
DOI:10.1002/chem.200800280]
34. Zhao C, Peng Y, Song Y, Ren J, Qu X. Self-assembly of single-stranded RNA on carbon nanotube: Polyadenylic acid to form a duplex structure. Small. 2008;4(5):656-61. [
Link] [
DOI:10.1002/smll.200701054]
35. Zhao C, Song Y, Ren J, Qu X. A DNA nanomachine induced by single-walled carbon nanotubes on gold surface. Biomaterials. 2009;30(9):1739-45. [
Link] [
DOI:10.1016/j.biomaterials.2008.12.034]
36. Bloomfield VA, Killman PA, Crothers DM, Tinoco I, Hearst JE, Wemmer DE, et al. Nucleic acids: Structure, properties, and functions. New Jersey: University Science Books; 2000. [
Link]
37. Hughes ME, Brandin E, Golovchenko JA. Optical absorption of DNA-carbon nanotube structures. Nano Lett. 2007;7(5):1191-4. [
Link] [
DOI:10.1021/nl062906u]
38. Ranjbar B, Gill P. Circular dichroism techniques: Biomolecular and nanostructural analyses - a review. Chem Biol Drug Des. 2009;74(2):101-20. [
Link] [
DOI:10.1111/j.1747-0285.2009.00847.x]
39. Protasevich, I, Ranjbar B, Labachov V, Makarov A, Gilli R, Briand C, et al. Conformational and thermal denaturation of apocalmodulin: role of electrostatic mutations. Biochemistry. 1997;36(8):2017-24. [
Link] [
DOI:10.1021/bi962538g]
40. Azizi A, Ranjbar B, Khajeh K, Ghodselahi T, Hoornam S, Mobasheri H, et al. Effects of trehalose and sorbitol on the activity and structure of Pseudomonas cepacia lipase: Spectroscopic insight. Int J Biol Macromol. 2011;49(4):652-6. [
Link] [
DOI:10.1016/j.ijbiomac.2011.06.025]
41. Cosa G, Focsaneanu KS, McLean JR, McNamee JP, Scaiano JC. Photophysical properties of fluorescent DNA-dyes bound to single-and double-stranded DNA in aqueous buffered solution.Photochem. Photobiol. 2001,73 585.
https://doi.org/10.1562/0031-8655(2001)073<0585:PPOFDD>2.0.CO;2 [
Link] [
DOI:10.1562/0031-8655(2001)0730585PPOFDD2.0.CO2]
42. Tolun G, Myers RS. A real-time DNase assay (ReDA) based on PicoGreen fluorescence. Nucleic Acids Res. 2003;31(18):e111. [
Link] [
DOI:10.1093/nar/gng111]
43. Murakami Y, Einarsson E, Edamura T, Maruyama S. Polarization dependence of the optical absorption of single-walled carbon nanotubes. Phys Rev Lett. 2005;94(8):087402. [
Link] [
DOI:10.1103/PhysRevLett.94.087402]
44. Dukovic G, Balaz M, Doak P, Berova ND, Zheng M, Mclean RS, et al. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J Am Chem Soc. 2006;128(28):9004-5. [
Link] [
DOI:10.1021/ja062095w]