Volume 9, Issue 2 (2018)                   JMBS 2018, 9(2): 285-291 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Darvishzadeh R, Arjomand N, Najafzadeh R, Heydari R. Proline Content, Total Protein, and Protein Electrophoresis Pattern in Sunflower (Helianthus annuus L.) in Response to Sclerotinia (Sclerotinia sclerotiorum) Disease. JMBS 2018; 9 (2) :285-291
URL: http://biot.modares.ac.ir/article-22-24441-en.html
1- “Institute of Biotechnology” and “Plant Breeding & Biotechnology Department, Agriculture Faculty”, Urmia University, Urmia, Iran, Plant Breeding & Biotechnology Department, Agriculture Faculty, Urmia University, 11 Kilometer Sero Road, Daneshgah Boulevard, Urmia, Iran Postal Code: 5756151818 , r.darvishzadeh@urmia.ac.ir
2- Biology Department, Science Faculty, Urmia University, Urmia, Iran
3- Plant Breeding & Biotechnology Department, Agriculture Faculty, Urmia University, Urmia, Iran
Abstract:   (4387 Views)
Aims: Sclerotinia is an important fungal disease of sunflower in Iran that affects its yield. The present study was conducted with the aim of evaluating proline content, total protein, and protein electrophoresis pattern in sunflower (Helianthus annuus L.) in response to sclerotinia (Sclerotinia sclerotiorum) disease.
Materials and Methods: In this experimental study, proline content, total protein, and protein electrophoresis pattern in sunflower lines (C39 and C100) were compared with control group during different times after inoculation of the lines with the Sclerotinia fungal isolates (SSU107 and SSKH41) under controlled conditions and as a factorial based on completely randomized design (CRD). Separation and isolation of total proteins extracted by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). The date were analyzed by SPSS 22 software, using multivariate analysis of variance and Tukey test.
Findings: Resistant line C39 in all of the time periods after being infected had higher proline compared with control and other groups. The total protein of all control plants was higher than that of infected plants with both fungal isolates. Fungal infection accumulated low molecular weight proteins in both lines, so that some proteins in the resistant and some proteins in susceptible lines were produced and removed, respectively.
Conclusion: Resistant line C39 in sunflower infected with fungal isolate SSU107 Sclerotinia sclerotiorum has the highest proline content. Fungal infection, especially in resistant lines, leads to a reduction in total protein levels and the accumulation of low molecular weight proteins in resistant and susceptible lines.
Full-Text [PDF 521 kb]   (2877 Downloads)    
Subject: Agricultural Biotechnology
Received: 2017/05/27 | Accepted: 2018/01/8 | Published: 2018/06/21

1. Hu J, Seiler G, Kole C, editors. Genetics, genomics and breeding of sunflower. Boca Raton: CRC Press; 2010. p. 360. [Link] [DOI:10.1201/b10192]
2. Paniego N, Heinz R, Fernandez P, Talia P, Nishinakamasu V, Hopp HE. Sunflower. In: Kole C, editor. Genome mapping and molecular breeding in plants, Oilseeds. 2nd Volume. Heidelberg: Springer Science & Business Media; 2007. pp. 153-77. [Link] [DOI:10.1007/978-3-540-34388-2_4]
3. Bolton MD, Thomma BPHJ, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol. 2006;7(1):1-16. [Link] [DOI:10.1111/j.1364-3703.2005.00316.x]
4. Saharan GS, Mehta N. Sclerotinia diseases of crop plants: Biology, ecology and disease management. Heidelberg: Springer Science & Business Media; 2008. p. 486. [Link] [DOI:10.1007/978-1-4020-8408-9]
5. Sharma P, Meena PD, Verma PR, Saharan GS, Mehta N, Singh D, et al. Sclerotinia sclerotiorum (Lib.) de Bary causing Sclerotinia rot in oilseed Brassicas: A review. J Oilseed Brassica. 2015;6(Special):1-44. [Link]
6. Ekins MG, Aitken EAB, Goulter KC. Carpogenic germination of Sclerotinia minor and potential distribution in Australia. Australas Plant Pathol. 2002;31(3):259-65. [Link] [DOI:10.1071/AP02022]
7. Amoozadeh M, Darvishzadeh R, Davar R, Abdollahi Mandoulakani B, Haddadi P, Basirnia A. Quantitative trait loci associated with isolate specific and isolate non-specific partial resistance to Sclerotinia sclerotiorum in sunflower. J Agric Sci Technol. 2015;17(1):213-26. [Link]
8. Emamgholi A, Zaefizadeh M, Imani AA. The proteomic analysis of resistance to Sclerotinia sclerotiorum fungus in sunflower seedling stage. Trends Life Sci. 2015;4(1):17-26. [Link]
9. Prats E, Bazzalo ME, León A, Jorrín JV. Accumulation of soluble phenolic compounds in sunflower capitula correlates with resistance to Sclerotinia sclerotiorum. Euphytica. 2003;132(3):321-9. [Link] [DOI:10.1023/A:1025046723320]
10. Barbosa Nascimento J, FreitasBarrigossi JA. The role of antioxidant enzymes in plant defense against herbivorous insects and phytopathogens. Agrarian Academy, Centro Científico Conhecer - Goiânia. 2014;1(1):234-50. [Portuguese] [Link]
11. Nanda AK, Andrio E, Marino D, Pauly N, Dunand C. Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol. 2010;52(2):195-204. [Link] [DOI:10.1111/j.1744-7909.2010.00933.x]
12. Slama I, Messedi D, Ghnaya T, Savoure A, Abdelly C. Effects of water deficit on growth and proline metabolism in Sesuvium portulacastrum. Environ Exp Bot. 2006;56(3):231-8. [Link] [DOI:10.1016/j.envexpbot.2005.02.007]
13. Delauney AJ, Verma DPS. Proline biosynthesis and osmoreulation in plants. Plant J. 1993;4(2):215-23. [Link] [DOI:10.1046/j.1365-313X.1993.04020215.x]
14. Chen C, Dickman MB. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci U S A. 2005;102(9):3459-64. [Link] [DOI:10.1073/pnas.0407960102]
15. Frindlender M, Inbar J, Chet I. Biological control of soilborne plant pathogens by a β-1, 3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem. 1993;25(9):1211-21. [Link] [DOI:10.1016/0038-0717(93)90217-Y]
16. Slusarenko AJ, Fraser RS, Van Loon LC. Mechanisms of resistance to plant diseases. Dordrecht: Academic Publisher, Kluwer; 2000. p.160. [Link] [DOI:10.1007/978-94-011-3937-3]
17. Plazek A, Zur I. Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Sci. 2003;164(6):1019-28. [Link] [DOI:10.1016/S0168-9452(03)00089-X]
18. Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M. Plant proteome analysis. Proteomics. 2004;4(2):285-98. [Link] [DOI:10.1002/pmic.200300602]
19. Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrín JV. Plant proteome analysis: A 2004-2006 update. Proteomics. 2006;6(20):5529-48. [Link] [DOI:10.1002/pmic.200600260]
20. Kakaei M, Zebarjadi AR, Mostafaie A. Study of protein pattern in Brassica napus genotypes under non-stress and drought stress conditions. Agric Biotechnol. 2010;9(2):49-57. [Persian] [Link]
21. Malenčić D, Kiprovski B, Popović M, Prvulović D, Miladinović J, Djordjević V. Changes in antioxidant systems in soybean as affected by Sclerotinia sclerotiorum (Lib.) de Bary. Plant Physiol Biochem. 2010;48(10-11):903-8. [Link] [DOI:10.1016/j.plaphy.2010.08.003]
22. Ashry NA, Mohamed HI. Impact of secondary metabolites and related enzymes in flax resistance and/or susceptibility to powdery mildew. World J Agric Sci. 2011;7(1):78-85. [Link]
23. Zhao J, Wang J, An L, Doerge RW, Chen ZJ, Grau CR, et al. Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta. 2007;227(1):13-24. [Link] [DOI:10.1007/s00425-007-0586-z]
24. Davar R, Darvishzadeh R, Majd A. Sclerotinia-induced accumulation of protein in the basal stem of resistant and susceptible lines of sunflower. Not Bot Horti Agrobot Cluj-Napoca. 2012;40(1):119-24. [Link] [DOI:10.15835/nbha4016363]
25. Davar R, Darvishzadeh R, Majd A. Changes in antioxidant systems in sunflower partial resistant and susceptible lines as affected by Sclerotinia sclerotiorum. Biologia. 2013;68(5):821-9. [Link] [DOI:10.2478/s11756-013-0235-x]
26. Giudici AM, Regente MC, De La Canal L. A potent antifungal protein from Helianthus annuus flowers is a trypsin inhibitor. Plant Physiol Biochem. 2000;38(11):881-8. [Link] [DOI:10.1016/S0981-9428(00)01191-8]
27. Ershad D. Fungi of Iran. 2nd Edition. Tehran: Agricultural Research, Education and Extension Organization, Tehran; 1995.p. 874. [Link]
28. Davar R. Interaction of sunflower and fungal Sclerotinia: A comparative study of anatomical structure and structural changes and supplementary of stem in susceptible and resistant lines and resistant genetic to the disease [Dissertation]. Tehran: Teacher Training University of Tehran; 2011. [Persian] [Link]
29. Amoo Zadeh M. Identification of the site of minor resistance genes controlling for Crohn's sclerotic cartilage in sunflower (Helianthus annuus L.) [Dissertation]. Urmia: Urmia University; 2012. [Persian] [Link]
30. Schneiter AA, Miller JF. Description of sunflower growth stages. Crop Sci. 1981;21(6):901-3. [Link] [DOI:10.2135/cropsci1981.0011183X002100060024x]
31. Price K, Colhoun J. A study of variability of isolates of Sclerotinia sclerotiorum (Lib.) de Bary from different hosts. J Phytopathol. 1975;83(2):159-66. [Link] [DOI:10.1111/j.1439-0434.1975.tb03527.x]
32. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1);205-7. [Link] [DOI:10.1007/BF00018060]
33. Lowry OH, Roseberough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. [Link]
34. Switzer RC, Merril CR, Shifrin S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem. 1979;98(1):231-7. [Link] [DOI:10.1016/0003-2697(79)90732-2]
35. Hare PD, Cress WA. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 1997;21(2):79-102. [Link] [DOI:10.1023/A:1005703923347]
36. Pociecha E, Płażek A, Janowiak F, Zwierzykowski Z. ABA level, proline and phenolic concentration and PAL activity induced during cold acclimation in androgenic Festulolium forms with contrasting resistance to frost and pink snow mould (Microdochium nivale). Physiol Mol Plant Pathol. 2008;73(6):126-32. [Link] [DOI:10.1016/j.pmpp.2009.03.005]
37. Van Loon LC, Rep M, Pieterse CM. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006;44:135-62. [Link] [DOI:10.1146/annurev.phyto.44.070505.143425]
38. Broekaert WF, Terras FRG, Cammue BPA. Induced and preformed antimicrobial proteins. In: Slusarenko AJ, Fraser RS, Van Loon LC, editors. Mechanisms of resistance to plant diseases. Heidelberg: Springer Science & Business Media; 2001. pp. 371-477. [Link]
39. Zaeifizadeh M, Tahmasebi Enferadi S, Mousavi A, Heidari P, Ahmadizadeh M. Quick method for screening of tolerant sunflower (Helianthus annuus L.) genotypes to Sclerotinia sclerotiorum at seedling stage. Biharean Biologist. 2013;7(1):29-32. [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.