Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 455-463 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

onagh B, Hasannia S, Heidari F. Cloning, Expression and Characterization of the Recombinant Protein Component of the Ectodomin Receptor of Bone Morphogenetic Protein Receptor in the Host of Prokaryotic. JMBS 2019; 10 (3) :455-463
URL: http://biot.modares.ac.ir/article-22-25363-en.html
1- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. , hasannia@modares.ac.ir
3- Animal Biotechnology Department, Institute of Agricultural Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
Abstract:   (4999 Views)
Bone morphogenetic proteins (BMPs) belong to the superfamily transforming growth factor-beta. These molecules play a role in fetal development and differentiation of different cells. In this regard, two homodimer molecules BMP-2 and BMP-7 play an important role in the formation of ectopic bone So that two types of recombinant form are available for ectopic use. After binding of the homodimer BMP-2 to its receptor at the cell surface, the accumulation of homodimers of type I and II receptors results in a biological response within the cell. Despite the existence of recombinant types of BMP-2 and BMP-7 due to the dangers of their use, the strategy of using monoclonal antibodies to trap endogenous types is still a priority in research programs. Instead of using monoclonal antibodies, the alternative method is to use the natural receptors of the ligand in the body. In this regard, due to the proper Kd binding of the ectodomain component of the receptor II of the BMP molecule in this project, the expression and purification of this part were attempted to trap BMP-2 endogenous. The protein component of the type II receptor ectodomain was expressed and purified by the bacterial host, which, by evaluating CD, of this recombinant protein showed a similar structure to that of the natural type. Also, its binding to the BMP-2 ligand with ELISA was evaluated and then calculated as Kd. Based on the results, the type II receptor ectodomain can be connected to the BMP-2 with a suitable binding property at the nM concentration, and in subsequent studies, it can be used as an alternative to a monoclonal antibody to Trap endogenous BMP molecules.
 
Full-Text [PDF 1016 kb]   (2492 Downloads)    
Article Type: Original Research | Subject: Pharmaceutical Biotechnology
Received: 2018/09/23 | Accepted: 2018/11/5 | Published: 2019/09/21

References
1. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893-9. [Link] [DOI:10.1126/science.150.3698.893]
2. ten Dijke P, Korchynskyi O, Valdimarsdottir G, Goumans MJ. Controlling cell fate by bone morphogenetic protein receptors. Mol Cell Endocrinol. 2003;211(1-2):105-13. [Link] [DOI:10.1016/j.mce.2003.09.016]
3. Sasikumar KP, Elavarasu S, Gadagi JS. The application of bone morphogenetic proteins to periodontal and peri-implant tissue regeneration: a literature review. J Pharm Bioallied Sci. 2012;4(Suppl 2):S427-30. [Link] [DOI:10.4103/0975-7406.100320]
4. Mace PD, Cutfield JF, Cutfield SM. Bacterial expression and purification of the ovine type II bone morphogenetic protein receptor ectodomain. Protein Expr Purif. 2007;52(1):40-9. [Link] [DOI:10.1016/j.pep.2006.07.025]
5. Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004;25(1):72-101. [Link] [DOI:10.1210/er.2003-0007]
6. ten Dijke P, Yamashita H, Ichijo H, Franzén P, Laiho M, Miyazono K, et al. Characterization of type I receptors for transforming growth factor-beta and activin. Science. 1994;264(5155):101-4. [Link] [DOI:10.1126/science.8140412]
7. Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci. 1995;92(17):7632-6. [Link] [DOI:10.1073/pnas.92.17.7632]
8. Garrison KR, Donell S, Ryder J, Shemilt I, Mugford M, Harvey I, et al. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess. 2007;11(30):1-150, iii-iv. [Link] [DOI:10.3310/hta11300]
9. McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int Orthop. 2007;31(6):729-34. [Link] [DOI:10.1007/s00264-007-0418-6]
10. Freire MO, You HK, Kook JK, Choi JH, Zadeh HH. Antibody-mediated osseous regeneration: a novel strategy for bioengineering bone by immobilized anti-bone morphogenetic protein-2 antibodies. Tissue Eng Part A. 2011;17(23-24):2911-8. [Link] [DOI:10.1089/ten.tea.2010.0584]
11. Freire MO, Kim HK, Kook JK, Nguyen A, Zadeh HH. Antibody-mediated osseous regeneration: the early events in the healing response. Tissue Eng Part A. 2013;19(9-10):1165-74. [Link] [DOI:10.1089/ten.tea.2012.0282]
12. Ansari S, Freire M, Choi MG, Tavari A, Almohaimeed M, Moshaverinia A, et al. Effects of the orientation of anti-BMP2 monoclonal antibody immobilized on scaffold in antibody-mediated osseous regeneration. J Biomater Appl. 2015;30(5):558-67. [Link] [DOI:10.1177/0885328215594704]
13. Hosseinpour S, Rad MR, Khojasteh A, Zadeh HH. Antibody administration for bone tissue engineering: a systematic review. Curr Stem Cell Res Ther. 2018;13(4):292-315. [Link] [DOI:10.2174/1574888X13666180207095314]
14. Mace PD, Cutfield JF, Cutfield SM. High resolution structures of the bone morphogenetic protein type II receptor in two crystal forms: implications for ligand binding. Biochem Biophys Res Commun. 2006;351(4):831-8. [Link] [DOI:10.1016/j.bbrc.2006.10.109]
15. Boesen CC, Motyka SA, Patamawenu A, Sun PD. Development of a recombinant bacterial expression system for the active form of a human transforming growth factor β type II receptor ligand binding domain. Protein Expr Purif. 2000;20(1):98-104. [Link] [DOI:10.1006/prep.2000.1306]
16. Kirsch T, Nickel J, Sebald W. Isolation of recombinant BMP receptor IA ectodomain and its 2:1 complex with BMP‐2. FEBS Lett. 2000;468(2-3):215-9. [Link] [DOI:10.1016/S0014-5793(00)01214-X]
17. Goetschy JF, Letourneur O, Cerletti N, Horisberger MA. The unglycosylated extracellular domain of type-II receptor for transforming growth factor-beta. A novel assay for characterizing ligand affinity and specificity. Eur J Biochem. 1996;241(2):355-62. [Link] [DOI:10.1111/j.1432-1033.1996.00355.x]
18. Greenwald J, Le V, Corrigan A, Fischer W, Komives E, Vale W, et al. Characterization of the extracellular ligand-binding domain of the type II activin receptor. Biochemistry. 1998;37(47):16711-8. [Link] [DOI:10.1021/bi981939o]
19. Allendorph GP, Vale WW, Choe S. Structure of the ternary signaling complex of a TGF-β superfamily member. Proc Natl Acad Sci U S A. 2006;103(20):7643-8. [Link] [DOI:10.1073/pnas.0602558103]
20. Greenwald J, Groppe J, Gray P, Wiater E, Kwiatkowski W, Vale W, et al. The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell. 2003;11(3):605-17. [Link] [DOI:10.1016/S1097-2765(03)00094-7]
21. Clark EDB. Refolding of recombinant proteins. Curr Opin Biotechnol. 1998;9(2):157-63. [Link] [DOI:10.1016/S0958-1669(98)80109-2]
22. Lilie H, Schwarz E, Rudolph R. Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol. 1998;9(5):497-501. [Link] [DOI:10.1016/S0958-1669(98)80035-9]
23. Martineau P. Affinity measurements by competition ELISA. In: Kontermann R, Dubel S, editors. Antibody engineering. Volume 1. 2nd Edition. Berlin: Springer; 2010. p. 657-65. [Link] [DOI:10.1007/978-3-642-01144-3_41]
24. Miyazono K, Maeda S, Imamura T. Coordinate regulation of cell growth and differentiation by TGF-β superfamily and Runx proteins. Oncogene. 2004;23(24):4232-7. [Link] [DOI:10.1038/sj.onc.1207131]
25. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17-29. [Link] [DOI:10.1016/S0092-8674(01)00622-5]
26. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38(12):1424-9. [Link] [DOI:10.1038/ng1916]
27. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21(9):1025-32. [Link] [DOI:10.1038/nbt864]
28. Nickel J, Dreyer MK, Kirsch T, Sebald W. The crystal structure of the BMP-2: BMPR-IA complex and the generation of BMP-2 antagonists. J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 1):S7-14. [Link] [DOI:10.2106/00004623-200100001-00002]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.