Volume 10, Issue 4 (2019)                   JMBS 2019, 10(4): 535-543 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Afsharnezhad M, Shahangian S, Salehi M, Sariri R. Effect of Organic Solvents and Osmolytes on the Activity and Stability of the Protease Purified from Ficus johannis. JMBS 2019; 10 (4) :535-543
URL: http://biot.modares.ac.ir/article-22-26181-en.html
1- Biology Department, Sciences Faculty, University of Guilan, Rasht, Iran
2- Biology Department, Sciences Faculty, University of Guilan, Rasht, Iran, Sciences Faculty, University of Guilan, Namjoo Street, Rasht, Iran. Postal Code: 4193833697 , shahangian@guilan.ac.ir
3- Biology Department, Science & Engineering Faculty, Gonbad Kavous University, Gonbad Kavous, Iran
Abstract:   (6918 Views)
The use of enzymes in organic solvents represents an important area of industrial and biotechnological development. However, organic solvents often cause protein denaturation, thereby reducing the activity and stability of enzymes. Use of stabilizing additives, protein engineering and chemical modification of enzymes are common strategies to overcome this problem. In this study, a cysteine protease from the latex of Ficus johannis was purified and the activity and stability of the protease were investigated in the presence of different organic solvents. The effect of trehalose, sorbitol, and sucrose on the enzyme activity was also studied in the presence of organic solvents. The results showed that the enzyme activity was elevated in the presence of low concentrations of organic solvents increased, while it was decreased with increasing concentration of organic solvents. However, the enzyme still retained 60% of its activity at 30% organic solvent concentration. The enzyme was considerably stable in the presence of organic solvents, maintaining almost 90% of its stability in the presence of 50% of all solvents. As stabilizing additives, sugars enhanced the catalytic activity and stability of the enzyme, and trehalose was the most effective sugar. The easy purification procedure and considerable activity and stability of the protease in the presence of organic solvents could suggest this enzyme as a good candidate for peptide synthesis industry.
Full-Text [PDF 906 kb]   (2471 Downloads)    
Article Type: Original Research | Subject: Industrial Biotechnology
Received: 2018/10/16 | Accepted: 2019/05/18 | Published: 2019/12/21

References
1. Simon LM, Kotormán M, Szabó A, Nemcsók J, Laczkó I. The effects of organic solvent/water mixtures on the structure and catalytic activity of porcine pepsin. Process Biochem. 2007;42(5):909-12. [Link] [DOI:10.1016/j.procbio.2007.01.014]
2. Davis BG, Boyer V. Biocatalysis and enzymes in organic synthesis. Nat Prod Rep. 2001;18(6):618-40. [Link] [DOI:10.1039/b003667f]
3. Doukyu N, Ogino H. Organic solvent-tolerant enzymes. Biochem Eng J. 2010;48(3):270-82. [Link] [DOI:10.1016/j.bej.2009.09.009]
4. Miroliaei M, Nemat-Gorgani M. Effect of organic solvents on stability and activity of two related alcohol dehydrogenases: A comparative study. Int J Biochem Cell Biol. 2002;34(2):169-75. [Link] [DOI:10.1016/S1357-2725(01)00109-1]
5. Griebenow K, Klibanov AM. On protein denaturation in aqueous- organic mixtures but not in pure organic solvents. J Am Chem Soc. 1996;118(47):11695-700. [Link] [DOI:10.1021/ja961869d]
6. Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J. Strategies for stabilization of enzymes in organic solvents. Acs Catal. 2013;3(12):2823-36. [Link] [DOI:10.1021/cs400684x]
7. Stepankova V, Damborsky J, Chaloupkova R. Organic co‐solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases. Biotechnol J. 2013;8(6):719-29. [Link] [DOI:10.1002/biot.201200378]
8. Arakawa T, Timasheff SN. Stabilization of protein structure by sugars. Biochemistry. 1982;21(25):6536-44. [Link] [DOI:10.1021/bi00268a033]
9. Back JF, Oakenfull D, Smith MB. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry. 1979;18(23):5191-6. [Link] [DOI:10.1021/bi00590a025]
10. Kumar V, Chari R, Sharma VK, Kalonia DS. Modulation of the thermodynamic stability of proteins by polyols: Significance of polyol hydrophobicity and impact on the chemical potential of water. Int J Pharm. 2011;413(1-2):19-28. [Link] [DOI:10.1016/j.ijpharm.2011.04.011]
11. Street TO, Bolen DW, Rose GD. A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A. 2006;103(38):13997-4002. [Link] [DOI:10.1073/pnas.0606236103]
12. Cioni P, Bramanti E, Strambini GB. Effects of sucrose on the internal dynamics of azurin. Biophys J. 2005;88(6):4213-22. [Link] [DOI:10.1529/biophysj.105.060517]
13. Schaller A. A cut above the rest: The regulatory function of plant proteases. Planta. 2004;220(2):183-97. [Link] [DOI:10.1007/s00425-004-1407-2]
14. Tomar R, Kumar R, Jagannadham MV. A stable serine protease, wrightin, from the latex of the plant Wrightia tinctoria (Roxb.) R. Br.: Purification and biochemical properties. J Agric Food Chem. 2008;56(4):1479-87. [Link] [DOI:10.1021/jf0726536]
15. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 1998;62(3):597-635. [Link]
16. Kumar CG, Takagi H. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol Adv. 1999;17(7):561-94. [Link] [DOI:10.1016/S0734-9750(99)00027-0]
17. Afsharnezhad M, Shahangian SS, Sariri R. A novel milk-clotting cysteine protease from Ficus johannis: Purification and characterization. Int J Biol Macromol. 2019;121:173-82. [Link] [DOI:10.1016/j.ijbiomac.2018.10.006]
18. Kumari M, Sharma A, Jagannadham MV. Religiosin B, a milk-clotting serine protease from Ficus religiosa. Food Chem. 2012;131(4):1295-303. [Link] [DOI:10.1016/j.foodchem.2011.09.122]
19. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5. [Link] [DOI:10.1038/227680a0]
20. Omrane Benmrad M, Moujehed E, Ben Elhoul M, Zaraî Jaouadi N, Mechri S, Rekik H, et al. A novel organic solvent-and detergent-stable serine alkaline protease from Trametes cingulata strain CTM10101. Int J Biol Macromol. 2016;91:961-72. [Link] [DOI:10.1016/j.ijbiomac.2016.06.025]
21. Hadjidj R, Badis A, Mechri S, Eddouaouda K, Khelouia L, Annane R, et al. Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. Int J Biol Macromol. 2018;114:1033-48. [Link] [DOI:10.1016/j.ijbiomac.2018.03.167]
22. Pazhang M, Khajeh K, Ranjbar B, Hosseinkhani S. Effects of water-miscible solvents and polyhydroxy compounds on the structure and enzymatic activity of thermolysin. J Biotechnol. 2006;127(1):45-53. [Link] [DOI:10.1016/j.jbiotec.2006.05.017]
23. Devaraj KB, Kumar PR, Prakash V. Purification, characterization, and solvent-induced thermal stabilization of ficin from Ficus carica. J Agric Food Chem. 2008;56(23):11417-23. [Link] [DOI:10.1021/jf802205a]
24. Anbu P. Characterization of solvent stable extracellular protease from Bacillus koreensis (BK-P21A). Int J Biol Macromol. 2013;56:162-8. [Link] [DOI:10.1016/j.ijbiomac.2013.02.014]
25. Shan SO, Herschlag D. The change in hydrogen bond strength accompanying charge rearrangement: Implications for enzymatic catalysis. Proc Natl Acad Sci. 1996;93(25):14474-9. [Link] [DOI:10.1073/pnas.93.25.14474]
26. Wan YY, Lu R, Xiao L, Du YM, Miyakoshi T, Chen CL, et al. Effects of organic solvents on the activity of free and immobilised laccase from Rhus vernicifera. Int J Biol Macromol. 2010;47(4):488-95. [Link] [DOI:10.1016/j.ijbiomac.2010.07.003]
27. Zaks A, Klibanov AM. The effect of water on enzyme action in organic media. J Biol Chem. 1988;263(17):8017-21. [Link]
28. Kumar S, Tsai CJ, Nussinov R. Factors enhancing protein thermostability. Protein Eng Des Sel. 2000;13(3):179-91. [Link] [DOI:10.1093/protein/13.3.179]
29. Gorman LA, Dordick JS. Organic solvents strip water off enzymes. Biotechnol Bioeng. 1992;39(4):392-7. [Link] [DOI:10.1002/bit.260390405]
30. Ghorbel B, Sellami-Kamoun A, Nasri M. Stability studies of protease from Bacillus cereus BG1. Enzym Microb Technol. 2003;32(5):513-8. [Link] [DOI:10.1016/S0141-0229(03)00004-8]
31. Geok LP, Abdul Razak CN, Abd Rahman RNZ, Basri M, Salleh AB. Isolation and screening of an extracellular organic solvent-tolerant protease producer. Biochem Eng J. 2003;13(1):73-7. [Link] [DOI:10.1016/S1369-703X(02)00137-7]
32. Ghatorae AS, Bell G, Halling PJ. Inactivation of enzymes by organic solvents: New technique with well‐defined interfacial area. Biotechnol Bioeng. 1994;43(4):331-6. [Link] [DOI:10.1002/bit.260430410]
33. Sadr-e-Momtaz A, Ebrahimi S, Rahmani H, Asghari SM, Aghamaali MR, Sajadi RH. Evaluation of protease stability from Pseudomonas aeroginosa strain PTCC1430 in organic solvents . New Cell Mol Biotechnol J. 2013;3(9):85-89. [Persian] [Link]
34. Ogino H, Watanabe F, Yamada M, Nakagawa S, Hirose T, Noguchi A, et al. Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. J Biosci Bioeng. 1999;87(1):61-8. [Link] [DOI:10.1016/S1389-1723(99)80009-7]
35. Alsafadi D, Paradisi F. Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles. 2013;17(1):115-22. [Link] [DOI:10.1007/s00792-012-0498-0]
36. Ogino H, Uchiho T, Doukyu N, Yasuda M, Ishimi K, Ishikawa H. Effect of exchange of amino acid residues of the surface region of the PST-01 protease on its organic solvent-stability. Biochem Biophys Res Commun. 2007;358(4):1028-33. [Link] [DOI:10.1016/j.bbrc.2007.05.047]
37. Ohtake S, Kita Y, Arakawa T. Interactions of formulation excipients with proteins in solution and in the dried state. Adv Drug Deliv Rev. 2011;63(13):1053-73. [Link] [DOI:10.1016/j.addr.2011.06.011]
38. Iyer PV, Ananthanarayan L. Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochem. 2008;43(10):1019-32. [Link] [DOI:10.1016/j.procbio.2008.06.004]
39. Kumar A, Attri P, Venkatesu P. Effect of polyols on the native structure of α-chymotrypsin: A comparable study. Thermochim Acta. 2012;536:55-62. [Link] [DOI:10.1016/j.tca.2012.02.027]
40. Silva C, Martins M, Jing S, Fu J, Cavaco-Paulo A. Practical insights on enzyme stabilization. Crit Rev Biotechnol. 2018;38(3):335-50. [Link] [DOI:10.1080/07388551.2017.1355294]
41. Zaroog MS, Abdul Kadir H, Tayyab S. Stabilizing effect of various polyols on the native and the denatured states of glucoamylase. Sci World J. 2013;2013:570859. [Link] [DOI:10.1155/2013/570859]
42. Mirzaei Nia S, Pazhang M, Imani M. Study of the stability of uricase from Aspergillus flavus and its stabilization by glucose. Modares J Biotechnol. 2017;8(1):50-60. [Persian] [Link]
43. Azizi A, Ranjbar B, Khajeh K, Ghodselahi T, Hoornam S. Comparative investigation of individual and combinational effects of trehalose & sorbitol on the activity and structure of Pseudomonas cepacia lipase. Modares J Biotechnol. 2013;3(2):21-31. [Persian] [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.