Volume 10, Issue 4 (2019)                   JMBS 2019, 10(4): 627-633 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahmani H, H.Sajedi R. Determination of Benserazide Based on Bioluminescence Inhibition of Aequorin. JMBS 2019; 10 (4) :627-633
URL: http://biot.modares.ac.ir/article-22-26351-en.html
1- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , sajedi_r@modares.ac.ir
Abstract:   (4396 Views)
Aims: Aequorin as a bioluminescence protein due to ease of use, non-toxic, and high capability of detecting has long been the interest of researchers. The aim of this study was to design a method for accurate and simple detection of important therapeutic agents using a bioluminescence inhibition based assay by using aequorin.
Materials & Methods: In this study, important drugs in therapeutic monitoring with structural similarity to Coelenterazine, were selected and their interaction with aequorin was investigated. Further, the conditions of the bioluminescence assay were optimized to achieve the lowest detection limit.
Findings: Among the drugs whose effects have been tested on aequorin, the only benserazide resulted in inhibition of the bioluminescence activity. This analyte can significantly reduce the bioluminescence of aequorin in a concentration-dependent manner. The best dose-response curve was obtained and IC50 of 0.26µM was calculated. The linear calibration curve was obtained in a range of about 100 to 1500nM with LOD and LOQ of 79 and 260nM, respectively. Furthermore, we demonstrated the application of the approach in human serum samples with a recovery of 97%. Guddem-Schild graph was plotted to determine the mechanism of inhibition which indicated that the IC50 of benserazide changed in the presence of different concentrations of Coelenterazine.
Conclusion: The proposed method can be used for measuring benserazide which can easily be applicable for real samples. Also, the results show that benserazide inhibits the bioluminescence activity of aequorin by competitive inhibition.
Full-Text [PDF 1013 kb]   (1841 Downloads)    
Article Type: Original Research | Subject: Molecular biotechnology
Received: 2018/10/21 | Accepted: 2019/05/18 | Published: 2019/12/21

1. Kricka LJ. Chemiluminescence and bioluminescence. Anal Chem. 1995;67(12):499-502. [Link] [DOI:10.1021/ac00108a035]
2. Mirasoli M, Michelini E. Analytical bioluminescence and chemiluminescence. Anal Bioanal Chem. 2014;406(23):5529-30. [Link] [DOI:10.1007/s00216-014-7992-4]
3. Head JF, Inouye S, Teranishi K, Shimomura O. The crystal structure of the photoprotein aequorin at 2.3 Å resolution. Nature. 2000;405(6784):372-6. [Link] [DOI:10.1038/35012659]
4. Hoffmann-La Roche Limited. Product monograph; PrPROLOPA®, levodopa and benserazide capsules; 2018. [Link]
5. Treseder SA, Rose S, Summo L, Jenner P. Commonly used L-amino acid decarboxylase inhibitors block monoamine oxidase activity in the rat. J Neural Transm. 2003;110(3):229-38. [Link] [DOI:10.1007/s00702-002-0778-4]
6. Tu Y, Xu Q, Zou QJ, Yin ZH, Sun YY, Zhao YD. Electrochemical behavior of levodopa at multi-wall carbon nanotubes-quantum dots modified glassy carbon electrodes. Anal Sci. 2007;23(11):1321-4. [Link] [DOI:10.2116/analsci.23.1321]
7. Viswanathan S, Liao WC, Huang CC, Hsu WL, Ho JA. Rapid analysis of L-dopa in urine samples using gold nanoelectrode ensembles. Talanta. 2007;74(2):229-34. [Link] [DOI:10.1016/j.talanta.2007.05.056]
8. Xiang C, Zou Y, Xie J, Fei X. Voltammetric determination of L‐dopa using a carbon nanotubes‐Nafion modified glassy carbon electrode. Anal Lett. 2006;39(13):2569-79. [Link] [DOI:10.1080/00032710600824706]
9. Blanco‐López MC, Lobo‐Castañón MJ, Miranda Ordieres AJ, Tuñón‐Blanco P. Electrochemical behavior of catecholamines and related compounds at in situ surfactant modified carbon paste electrodes. Electroanal Int J Devot Fundam Pract Asp Electroanal. 2007;19(2‐3):207-13. [Link] [DOI:10.1002/elan.200603712]
10. Blanco M, Valverde I. Chiral and non chiral determination of Dopa by capillary electrophoresis. J Pharm Biomed Anal. 2003;31(3):431-8. [Link] [DOI:10.1016/S0731-7085(02)00722-7]
11. Chamsaz M, Safavi A, Fadaee J. Simultaneous kinetic-spectrophotometric determination of carbidopa, levodopa and methyldopa in the presence of citrate with the aid of multivariate calibration and artificial neural networks. Anal Chim Acta. 2007;603(2):140-6. [Link] [DOI:10.1016/j.aca.2007.09.006]
12. Madrakian T, Mohammadnejad M. Simultaneous spectrophotometric determination of levodopa and carbidopa in pharmaceutical formulations and water samples by using mean centering of ratio spectra and H-point standard addition methods. Chem Pharm Bull. 2007;55(6):865-70. [Link] [DOI:10.1248/cpb.55.865]
13. Zhao Sh, Bai W, Wang B, He M. Determination of levodopa by capillary electrophoresis with chemiluminescence detection. Talanta. 2007;73(1):142-6. [Link] [DOI:10.1016/j.talanta.2007.03.023]
14. Karpińska J, Smyk J, Wołyniec E. A spectroscopic study on applicability of spectral analysis for simultaneous quantification of l-dopa, benserazide and ascorbic acid in batch and flow systems. Spectrochim Acta Part A Mol Biomol Spectrosc. 2005;62(1-3):213-20. [Link] [DOI:10.1016/j.saa.2004.12.029]
15. Pistonesi M, Centurión ME, Fernández Band BS, Damiani PC, Olivieri AC. Simultaneous determination of levodopa and benserazide by stopped-flow injection analysis and three-way multivariate calibration of kinetic-spectrophotometric data. J Pharm Biomed Anal. 2004;36(3):541-7. [Link] [DOI:10.1016/j.jpba.2004.07.006]
16. Wang J, Zhou Y, Liang J, He PG, Fang YZ. Determination of levodopa and benserazide hydrochloride in pharmaceutical formulations by CZE with amperometric detection. Chromatographia. 2005;61(5-6):265-70. [Link] [DOI:10.1365/s10337-005-0515-x]
17. Lu JQ, He WW, Zhou XW. Chemiluminescence of luminol-potassium ferricyanide with benserazide and application in analytical chemistry. Chin Chem Lett. 2006;17(9):1233-5. [Link]
18. Wabaidur SM, Alam SM, Khan MA. Voltammetric determination of benserazide in pharmaceutical formulations using polymer modified electrode. Appl Chem. 2008;12(1):85-8. [Link]
19. Pérez-Ortiz M, Bollo S, Zapata-Urzúa C, Yáñez C, Alvarez-Lueje A. Voltammetric study and direct analytical determination of the antiparkinson drug benserazide. Anal Lett. 2011;44(9):1683-98. [Link] [DOI:10.1080/00032719.2010.520395]
20. Dai Y, Sangerman J, Luo HY, Fucharoen S, Chui DHK, Faller DV, et al. Therapeutic fetal-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms. Blood Cells Mol Dis. 2016;56(1):62-9. [Link] [DOI:10.1016/j.bcmd.2015.10.004]
21. Jalilian N, Sajedi RH, Shanehsaz M, Gharaat M. CdTe quantum dots with green fluorescence generated by bioluminescence resonance energy transfer from aequorin. Microchim Acta. 2017;184(3):753-62. [Link] [DOI:10.1007/s00604-016-2057-3]
22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54. [Link] [DOI:10.1006/abio.1976.9999]
23. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5. [Link] [DOI:10.1038/227680a0]
24. Saha S, Sarkar P, Turner AP. Interference‐free electrochemical detection of nanomolar dopamine using doped polypyrrole and silver nanoparticles. Electroanalysis. 2014;26(10):2197-206. [Link] [DOI:10.1002/elan.201400332]
25. Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24(1):1-10. [Link] [DOI:10.3904/kjim.2009.24.1.1]
26. Siemens. Therapeutic drug monitoring (TDM): An educational guide [Internet]. Munich: Siemens; 2009 [cited 2019 May 20]. Available from: https://bit.ly/2lUSJpR [Link]
27. Hamorksy KT. Genetically engineered aequorin for the development of novel bioanalytical systems [Dissertation]. Lexington: University of Kentucky; 2011. [Link]
28. Teasley Hamorsky K, Ensor CM, Dikici E, Pasini P, Bachas L, Daunert S. Bioluminescence inhibition assay for the detection of hydroxylated polychlorinated biphenyls. Anal Chem. 2012;84(18):7648-55. [Link] [DOI:10.1021/ac301872u]
29. Rahmani H, Sajedi RH. Aequorin as a sensitive and selective reporter for detection of dopamine: A photoprotein inhibition assay approach. Int J Biol Macromol. 2019;122:677-83. [Link] [DOI:10.1016/j.ijbiomac.2018.10.221]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.