Volume 9, Issue 3 (2018)                   JMBS 2018, 9(3): 483-494 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghobadian S, Ganjidoust H, Ayati B, Soltani N. Chlorophyll and Carotenoid Optimization of Spirulina Biomass by Innovative Photobioreactor. JMBS 2018; 9 (3) :483-494
URL: http://biot.modares.ac.ir/article-22-27774-en.html
1- Environmental Engineering Department, Civil & Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran
2- Environmental Engineering Department, Civil & Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran, Environmental Engineering Department, Civil & Environmental Engineering Faculty, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran , h-ganji@modares.ac.ir
3- Petroleum Microbiology Department, Research Institute of Applied Science, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
Abstract:   (3925 Views)
This article has no abstract.
Full-Text [PDF 712 kb]   (3425 Downloads)    
Subject: Agricultural Biotechnology
Received: 2017/10/29 | Accepted: 2018/03/11 | Published: 2018/09/22

References
1. Sutherland DL, Howard-Williams C, Turnbull MH, Broady PA, Craggs RJ. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Bioresour technol. 2015;184:222-9. [Link] [DOI:10.1016/j.biortech.2014.10.074]
2. Chen HB, Wu JY, Wang CF, Fu CC, Shieh CJ, Chen CI, Wang CY, Liu YC. Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J. 2010;53(1):52-6. [Link] [DOI:10.1016/j.bej.2010.09.004]
3. Wuang SC, Khin MC, Chua PQD, Luo YD. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 2016;15:59-64. [Link] [DOI:10.1016/j.algal.2016.02.009]
4. Moraes L, Da Rosa GM, Cardias BB, Dos Santos LO, Viera Costa JA. Microalgal biotechnology for greenhouse gas control: Carbon dioxide fixation by Spirulina sp. at different diffusers. Ecol Eng. 2016;91:426-31. [Link] [DOI:10.1016/j.ecoleng.2016.02.035]
5. Shao Y, Pan J, Zhang C, Jiang L, He Y. Detection in situ of carotenoid in microalgae by transmission spectroscopy. Computer Electron Agric. 2015;112:121-7. [Link] [DOI:10.1016/j.compag.2014.10.008]
6. Henrikson R. Earth food Spirulina: How this remarkable blue-green algae can transform your health and our planet. San Rafael: Ronore Enterprises; 1989. [Link]
7. Le Tutour B, Benslimane F, Gouleau MP, Gouygou JP, Saadan B, Quemeneur F. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J Appl Phycol. 1998;10:121. [Link] [DOI:10.1023/A:1008007313731]
8. Borowitzka MA. Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol. 1995;7(1):3-15. [Link] [DOI:10.1007/BF00003544]
9. Danesi EDG, Rangel-YaguiJ CO, Carvalho JCM, Sato S. Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenerg. 2004;26(4):329-35. [Link] [DOI:10.1016/S0961-9534(03)00127-2]
10. Phongamwong T, Chareonpanich M, Limtrakul J. Role of chlorophyll in Spirulina on photocatalytic activity of CO2 reduction under visible light over modified N-doped TiO2 photocatalysts. Appl Catal B Environ. 2015;168:114-24. [Link] [DOI:10.1016/j.apcatb.2014.12.022]
11. Cazzonelli CI. Carotenoids in nature: Insights from plants and beyond. Funct Plant Biol. 2011;38(11):833-47. [Link] [DOI:10.1071/FP11192]
12. Ishida BK, Bartley GE. Carotenoids: chemistry, sources and physiology. In: Caballero B. Guide to nutritional supplements. Cambridge: Academic Press;2009. [Link]
13. Hashtroudi MS, Shariatmadari Z, Riahi H, Ghassempour AR. Analysis of Anabaena vaginicola and Nostoc calcicola from Northern Iran, as rich sources of major carotenoids. Food chem. 2013;136(3-4):1148-53. [Link] [DOI:10.1016/j.foodchem.2012.09.055]
14. Liang C, Zhao F, Wei W, Wen Z, Qin S. Carotenoid biosynthesis in cyanobacteria: Structural and evolutionary scenarios based on comparative genomics. Int J Biol Sci. 2006;2(4):197-207. [Link] [DOI:10.7150/ijbs.2.197]
15. Mortensen A. Carotenoids and other pigments as natural colorants. Pure Appl Chem. 2006;78(8):1477-91. [Link] [DOI:10.1351/pac200678081477]
16. Danesi EDG, Rangel-Yagui CO, De Carvalho JCM, Sato S. An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenerg. 2002;23(4):261-9. [Link] [DOI:10.1016/S0961-9534(02)00054-5]
17. Matsudo MC, Bezerra RP, Sato S, Perego P, Converti A, Carlos J. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem Eng J. 2009;43(1):52-7. [Link] [DOI:10.1016/j.bej.2008.08.009]
18. Ajayan KV, Selvaraju M. Reflector based chlorophyll production by Spirulina platensis through energy save mode. Bioresour Technol. 2011;102(16):7591-4. [Link] [DOI:10.1016/j.biortech.2011.05.013]
19. Chen HB, Wu JY, Wang CF, Fu CC, Shieh CJ, Chen CI. Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J. 2010;53(1):52-6. [Link] [DOI:10.1016/j.bej.2010.09.004]
20. Ghobadian S, Ganjidoost H, Ayati B, Soltani N. Evaluation of the effects of aeration cycle and culture medium concentration on biomass qualitative and quantitative indices in microalga Spirulina as candidate for wastewater treatment. J Aquat Ecol. 2015;5(2):87-99. [Persian] [Link]
21. Andersen RA. Algal culturing techniques. Cambridge: Academic press; 2005. [Link]
22. Pulz O, Scheibenbogen K. Photobioreactors: Design and performance with respect to light energy input. In: Pulz O, Scheibenbogen K. Bioprocess and algae reactor technology, apoptosis. 59th Vol. Berlin: Springer; 1998. p. 123-52. [Link] [DOI:10.1007/BFb0102298]
23. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294-306. [Link] [DOI:10.1016/j.biotechadv.2007.02.001]
24. Ghobadian S, Ganjidoust H, Ayati B, Soltani N. The innovative engineered photobioreactor to optimize the amount of microalgae Spirulina biomass. Nova Biol Repert. 2018;5(1):13-25. [Persian] [Link]
25. Ravelonandro PH, Ratianarivo DH, Joannis-Cassan C, Isambert A, Raherimandimby M. Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food Bioprod Process. 2011;89(3):209-16. [Link] [DOI:10.1016/j.fbp.2010.04.009]
26. Tredici MR. Photobiology of microalgae mass cultures: Understanding the tools for the next green revolution. Biofuels. 2010:1(1):143-62. [Link] [DOI:10.4155/bfs.09.10]
27. Flickinger MC, Drew SW, editors. Encyclopedia of bioprocess technology. Hoboken: John Wiley & Sons; 1999. [Link]
28. Prussi M, Buffi M, Casini D, Chiaramonti D, Martelli F, Carnevale M, et al. Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass Bioenerg. 2014;67:390-400. [Link] [DOI:10.1016/j.biombioe.2014.05.024]
29. Marker AFH. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshw Biol. 1972;2(4):361-85. [Link] [DOI:10.1111/j.1365-2427.1972.tb00377.x]
30. Chamovitz D, Sandmann G, Hirschberg J. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem. 1993;268(23):17348-53. [Link]
31. Lenth RV. Response-surface methods in R, using rsm. J Stat Softw. 2010;32(7):1-17. [Link]
32. Soundarapandian P, Vasanthi B. Effects of chemical parameters on Spirulina platensis biomass production: Optimized method for phycocyanin extraction. Int J Zool Res. 2008;4(1):1-11. [Link] [DOI:10.3923/ijzr.2008.1.11]
33. Foyer CH, Lelandais M, Kunert KJ. Photooxidative stress in plants. Physiologia Plant. 1994;92(4):696-717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x [Link] [DOI:10.1034/j.1399-3054.1994.920422.x]
34. Rodrigues M, Ferreira LS, Converti A, Sato S, Carvalho JCM. Fed-batch cultivation of Arthrospira (Spirulina) platensis: Potassium nitrate and ammonium chloride as simultaneous nitrogen sources. Bioresour Technol. 2010;101(12):4491-8. [Link] [DOI:10.1016/j.biortech.2010.01.054]
35. Saha SK, Moane S, Murray P. Effect of macro-and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18. Bioresour Technol. 2013;147:23-8. [Link] [DOI:10.1016/j.biortech.2013.08.022]
36. Saha SK, Uma L, Subramanian G. Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol Ecol Banner. 2003;45(3):263-72. [Link] [DOI:10.1016/S0168-6496(03)00162-4]
37. Saha SK, McHugh E, Hayes J, Moane S, Walsh D, Murray P. Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresour Technol. 2013;128:118-24. [Link] [DOI:10.1016/j.biortech.2012.10.049]
38. Ben-Amotz A, Avron M. On the factors which determine massive β-Carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol. 1983;72(3): 593-7. [Link] [DOI:10.1104/pp.72.3.593]
39. Gómez PI, González MA. The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biol Res. 2005;38(2-3):151-62. [Link] [DOI:10.4067/S0716-97602005000200005]
40. Richmond A. Prerequisite for industrial microalga culture: Efficient utilization of solar irradiance. Stadler T, editor. Unknown: Algal Biotechnology; 1988. [Link]
41. Masojídek J, Torzillo G, Koblížek M. Photosynthesis in microalgae. In: Richmond A, Hu Q, editors. Handbook of microalgal culture: Biotechnology and Applied Phycology. Hoboken: John Wiley & Sons; 2004. p. 20. 45- Lynch HC, Bushell ME. The physiology of erythromycin biosynthesis in cyclic fed batch culture. Microbiology. 1995;141(Part 12):3105-11. [Link]
42. Goodwin TW. Nature and distribution of carotenoids. Food Chem. 1980;5(1):3-13. [Link] [DOI:10.1016/0308-8146(80)90061-8]
43. Walsh K, Jones GJ, Dunstan RH. Effect of irradiance on fatty acid, carotenoid, total protein composition and growth of Microcystis aeruginosa. Phytochemistry. 1997;44(5):817-24. [Link] [DOI:10.1016/S0031-9422(96)00573-0]
44. Rangel-Yagui, CDO, Danesi ED, De Carvalho JC, Sato S. Chlorophyll production from Spirulina platensis: Cultivation with urea addition by fed-batch process. Bioresour Technol. 2004;92(2):133-41. [Link] [DOI:10.1016/j.biortech.2003.09.002]
45. 45- Lynch HC, Bushell ME. The physiology of erythromycin biosynthesis in cyclic fed batch culture. Microbiology. 1995;141(Part 12):3105-11. [Link] [DOI:10.1099/13500872-141-12-3105]
46. Ben-Amotz A. New mode of Dunaliella biotechnology: Two-phase growth for β-carotene production. J Appl Phycol. 1995;7(1):65-8. [Link] [DOI:10.1007/BF00003552]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.