Volume 9, Issue 4 (2018)                   JMBS 2018, 9(4): 593-601 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farbodi M, Khoshkbar Sadeghi A. Preparation of Carboxymethyl Cellulose/Calcium Alginate/Polyvinyl Alcohol/Silver Nanocomposite by Electrospinning Method and Its Performance as Wound Dressing. JMBS 2018; 9 (4) :593-601
URL: http://biot.modares.ac.ir/article-22-30399-en.html
1- Chemistry Department, East Azarbayjan Science & Research Branch, Islamic Azad University, Tabriz, Iran, Chemistry Department, East Azarbayjan Science & Research Branch, Islamic Azad University, Tabriz, Iran , m.farbodi@iaut.ac.ir
2- Chemistry Department, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Abstract:   (3800 Views)
Aims: In medicine, nanofiber can be used in wound dressing. The aim of this study was to prepare carboxymethyl cellulose/calcium alginate/polyvinyl alcohol/silver (CMC/Alg/PVA/Ag) nanocomposite by electrospinning method and to investigate its performance as wound dressing.
Materials and Methods: In the present experimental study, CMC biofilm was prepared by solution method. Then, calcium alginate/polyvinyl alcohol/silver (Alg/PVA/Ag) nanofiber was prepared by electrospining method in the optimal conditions and deposited on CMC film. Finally, the possibleof application of the product as wound dressing and its antibacterial and morphological properties, as well as permeability to water vapor were investigated.
Findings: CMC/Alg/PVA/Ag film had more permeability in comparison to Alg/PVA/Ag nanofibers and less water vapor permeability value in comparison to CMC film. The most sensivity belonged to Escherichia coli and Klebsiella pneumoniae gram-negative bacteria with inhibition zone diameter of 23mm and 24mm, respectively, and Staphylococcus aureus and Staphylococcus saprophyticus gram-positive bacteria with inhibition zone diameter of 21mm and 17mm, respectively, for CMC/Alg/PVA/Ag film. Also, the wound with CMC/Alg/PVA/Ag dressing significantly showed more healing speed in comparison to CMC dressings and CMC/Ag.
Conclusion: The use of CMC/Alg/PVA/Ag nanocomposite as wound dressing is possible. This dressing, with pores, allows the vapors to flow through the wound secretions, is impermeable to liquids and bacteria, but is permeable to oxygen and vapor; it is not allergenic and does not cause toxicity and chemical stimulation, transparent dressing and the possibility of seeing the wound is easily possible, it provides the moisture level needed for wound healing, it does not stick to the wound and as a result, its replacement is without pain and cheap.
Full-Text [PDF 959 kb]   (3274 Downloads)    
Subject: Agricultural Biotechnology
Received: 2016/07/31 | Accepted: 2017/04/26 | Published: 2018/12/21

References
1. Abolghasemi fakhri L, Ghanbarzadeh B, Dehghannia J, Entezami AA. The effects of montmorillonite and cellulose nanocrystals on physical properties of carboxymethyl cellulose/polyvinyl alcohol blend films. Iran J Polym Sci Technol. 2012;24(6):455-66. [Persian] [Link]
2. Choi Y, Simonsen J. Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol. 2006;6(3):633-9. [Link] [DOI:10.1166/jnn.2006.132]
3. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279-90. [Link] [DOI:10.1021/nn800596w]
4. Murali Mohan Y, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, et al. Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci. 2010;342(1):73-82. [Link] [DOI:10.1016/j.jcis.2009.10.008]
5. Thomas V, Namdeo M, Murali Mohan Y, Bajpai SK, Bajpai M. Review on polymer, hydrogel and microgel metal nanocomposites: A facile nanotechnological approach. J Macromol Sci Part A Pure Appl Chem. 2007;45(1):107-19. [Link] [DOI:10.1080/10601320701683470]
6. De Moura MR, Aouada FA, Avena-Bustillos RJ, McHugh TH, Krochta JM, Mattoso LHC. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng. 2009;92(4):448-53. [Link] [DOI:10.1016/j.jfoodeng.2008.12.015]
7. Cottrell IW, Kovacs P. Alginates. In: Davidson RL, editor. Handbook of water-soluble gums and resins. New York : Mc Graw-Hill; 1980. pp. Frist Page?-Last Page?. [Link]
8. Cook JG. Handbook of textile fibres, man-made fibres. Cambridge: Woodhead Publishing; 1984. pp. Frist Page?-Last Page?. [Link] [DOI:10.1533/9781855734852]
9. Rhim JW. Physical and mechanical properties of water resistant sodium alginate films. LWT Food Sci Technol. 2004;37(3):323-30. [Link] [DOI:10.1016/j.lwt.2003.09.008]
10. Knill CJ, Kennedy JF, Mistry J, Miraftab M, Smart G, Groocock MR, et al. Alginate fibers modified with unhydrolysed and hydrolysed chitosans for wound dressings. Carbohydr Polym. 2004;55(1):65-76. [Link] [DOI:10.1016/j.carbpol.2003.08.004]
11. Opasanon S, Muangman P, Namviriyachote N. Clinical effectiveness of alginate silver dressing in outpatient management of partial-thickness burns. Int Wound J. 2010;7(6):467-71. [Link] [DOI:10.1111/j.1742-481X.2010.00718.x]
12. Son WK, Youk JH, Lee TS, Park WH. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun. 2004;25(18):1632-7. [Link] [DOI:10.1002/marc.200400323]
13. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3(1): 95-101. [Link] [DOI:10.1016/j.nano.2006.12.001]
14. Sundaramoorthi C, Devarasu S, Vengadesh Prabhu K. Antimicrobial and wound healing activity of silver nanoparticles synthesized fromstreptomyces aureofaciens. Int J Pharm Res Dev. 2011;2(12):69-75. [Link]
15. Wei D, Sun W, Qian W, Ye Y, Ma X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res. 2009;344(17):2375-82. [Link] [DOI:10.1016/j.carres.2009.09.001]
16. Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym. 2008;72(1):43-51. [Link] [DOI:10.1016/j.carbpol.2007.07.025]
17. Rhim JW, Hong SI, Park HM, Ng PK. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem. 2006;54(16):5814-22. [Link] [DOI:10.1021/jf060658h]
18. Yoon KY, Hoon Byeon J, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007;373(2-3):572-5. [Link] [DOI:10.1016/j.scitotenv.2006.11.007]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.