1. Pagona G, Tagmatarchis N. Carbon nanotubes: Materials for medicinal chemistry and biotechnological applications. Curr Med Chem. 2006;13(15):1789-98. [
Link] [
DOI:10.2174/092986706777452524]
2. Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS. The glass menagerie: Diatoms for novel applications in nanotechnology. Trends Biotechnol. 2009;27(2):116-27. [
Link] [
DOI:10.1016/j.tibtech.2008.11.003]
3. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359(6397):710-12. [
Link] [
DOI:10.1038/359710a0]
4. Rámila A, Munoz B, Pérez-Pariente J, Vallet-Regí M. Mesoporous MCM-41 as drug host system. J Sol Gel Sci Technol. 2003;26(1-3):1199-202. [
Link] [
DOI:10.1023/A:1020764319963]
5. Izquierdo-Barba I, Colilla M, Vallet-Regí M. Nanostructured mesoporous silicas for bone tissue regeneration. J Nanomater. 2008;2008:60. [
Link] [
DOI:10.1155/2008/106970]
6. Vallet-Regí M, Balas F, Colilla M, Manzano M. Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog Solid State Chem. 2008;36(3):163-91. [
Link] [
DOI:10.1016/j.progsolidstchem.2007.10.002]
7. Slowing I, Trewyn BG, Lin VS. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc. 2006;128(46):14792-3. [
Link] [
DOI:10.1021/ja0645943]
8. Aw MS, Simovic S, Yu Y, Addai-Mensah J, Losic D. Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol. 2012;223:52-8. [
Link] [
DOI:10.1016/j.powtec.2011.04.023]
9. Gordon R, Aguda BD. Diatom morphogenesis: Natural fractal fabrication of a complex microstructure. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 4-7 November, 1988, New Orleans, USA. Piscataway: IEEE; 1988. pp. 273-4. [
Link] [
DOI:10.1109/IEMBS.1988.94513]
10. Leonardo S, Prieto-Simón B, Campàs M. Past, present and future of diatoms in biosensing. TrAC Trends Anal Chem. 2016;79:276-85. [
Link] [
DOI:10.1016/j.trac.2015.11.022]
11. Ren F, Campbell J, Wang X, Rorrer GL, Wang AX. Enhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica. Opt Express. 2013;21(13):15308-13. [
Link] [
DOI:10.1364/OE.21.015308]
12. Rorrer GL, Chang CH, Liu SH, Jeffryes C, Jiao J, Hedberg JA. Biosynthesis of silicon-germanium oxide nanocomposites by the marine diatom Nitzschia frustulum. J Nanosci Nanotechnol. 2005;5(1):41-9. [
Link] [
DOI:10.1166/jnn.2005.005]
13. Qin T, Gutu T, Jiao J, Chang CH, Rorrer GL. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum. Acs Nano. 2008;2(6):1296-304. [
Link] [
DOI:10.1021/nn800114q]
14. Jeffryes C, Gutu T, Jiao J, Rorrer GL. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. Acs Nano. 2008;2(10):2103-12. [
Link] [
DOI:10.1021/nn800470x]
15. Townley HE, Woon KL, Payne FP, White-Cooper H, Parker AR. Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate. Nanotechnology. 2007;18(29):295101. [
Link] [
DOI:10.1088/0957-4484/18/29/295101]
16. Schröfel A, Kratošová G, Bohunická M, Dobročka E, Vávra I. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. J Nanoparticle Res. 2011;13(8):3207-16. [
Link] [
DOI:10.1007/s11051-011-0221-6]
17. Feurtet-Mazel A, Mornet S, Charron L, Mesmer-Dudons N, Maury-Brachet R, Baudrimont M. Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms. Environ Sci Pollut Res. 2016;23(5):4334-9. [
Link] [
DOI:10.1007/s11356-015-4139-x]
18. Ren F, Campbell J, Rorrer GL, Wang AX. Surface-enhanced Raman spectroscopy sensors from nanobiosilica with self-assembled plasmonic nanoparticles. IEEE J Sel Top Quantum Electron. 2014;20(3):127-32. [
Link] [
DOI:10.1109/JSTQE.2014.2301016]
19. Kumeria T, Bariana M, Altalhi T, Kurkuri M, Gibson CT, Yang W, et al. Graphene oxide decorated diatom silica particles as new nano-hybrids: Towards smart natural drug microcarriers. J Mater Chem B. 2013;1(45):6302-11. [
Link] [
DOI:10.1039/c3tb21051k]
20. Todd T, Zhen Z, Tang W, Chen H, Wang G, Chuang YJ, et al. Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors. Nanoscale. 2014;6(4):2073-6. [
Link] [
DOI:10.1039/c3nr05623f]
21. Aw MS, Simovic S, Addai-Mensah J, Losic D. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine. 2011;6(7):1159-73. [
Link] [
DOI:10.2217/nnm.11.29]
22. Bariana M, Aw MS, Losic D. Tailoring morphological and interfacial properties of diatom silica microparticles for drug delivery applications. Adv Powder Technol. 2013;24(4):757-63. [
Link] [
DOI:10.1016/j.apt.2013.03.015]
23. Townley HE, Parker AR, White‐Cooper H. Exploitation of diatom frustules for nanotechnology: Tethering active biomolecules. Adv Funct Mater. 2008;18(2):369-74. [
Link] [
DOI:10.1002/adfm.200700609]
24. Gale DK, Gutu T, Jiao J, Chang CH, Rorrer GL. Photoluminescence detection of biomolecules by antibody‐functionalized diatom biosilica. Adv Funct Mater. 2009;19(6):926-33. [
Link] [
DOI:10.1002/adfm.200801137]
25. Santra S, Liesenfeld B, Dutta D, Chatel D, Batich CD, Tan W, et al. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J Nanosci Nanotechnol. 2005;5(6):899-904. [
Link] [
DOI:10.1166/jnn.2005.146]
26. He X, Duan J, Wang K, Tan W, Lin X, He Ch. A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition. J Nanosci Nanotechnol. 2004;4(6):585-9. [
Link] [
DOI:10.1166/jnn.2004.011]