Volume 10, Issue 4 (2019)                   JMBS 2019, 10(4): 581-588 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esfandyari J, Shojaedin-Givi B, Mozafari-Nia M, Hashemzadeh H, Naderi-Manesh H. Diatom Biosilica Shell Manipulation with Gold, SPION Nanoparticles and Trastuzumab with Aims of Diagnostics of HER2 Cells. JMBS 2019; 10 (4) :581-588
URL: http://biot.modares.ac.ir/article-22-31008-en.html
1- Nanobiotechnology Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Analytical Chemistry Department, Basic Sciences Faculty, Persian Gulf University, Bushehr, Iran
3- Nanobiotechnology Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , naderman@modares.ac.ir
Abstract:   (5406 Views)
Diatoms biosilica shell, frustule, is substitute biostructures to mesoporous silica particles, which possesses their wide surfaces, nano-diameter porosity, mechanical strength, and thermal stability, optical capabilities, and the ability to bind to biomolecules can be used in biosensing applications. In this study, diatom species called Chaetoceros muelleri, was used for the fabrication of the Fe2O3-Au-Biosilica magnetic package. After micro-algae cultivation, the synthesis of gold nanoparticles (AuNPs) on silica walls was carried out using the bio-synthesis method, which evaluations have demonstrated the continuous formation of spherical AuNPs on the walls and its surfaces. After this step, the magnetic iron oxide nanoparticles were attached to the silica surface of the diatom, this, in turn, leads to system guiding using a magnetic field. Surface modification of diatoms magnetic complex, by using the APTES, allowed the attachment of fluorescence Rhodamine and the Herceptin antibody (Trastuzumab) to the structure. As well as the attachment of the fabricated system to target cells (SKBR3) was confirmed by fluorescence microscopic analysis. The results of this study indicate the ability and specificity of the diatom silicone shell as a "multipurpose" package for diagnostic and therapeutic activities.
Full-Text [PDF 1130 kb]   (2598 Downloads)    
Article Type: Original Research | Subject: Nanotechnology
Received: 2019/03/4 | Accepted: 2019/07/14 | Published: 2019/12/21

References
1. Pagona G, Tagmatarchis N. Carbon nanotubes: Materials for medicinal chemistry and biotechnological applications. Curr Med Chem. 2006;13(15):1789-98. [Link] [DOI:10.2174/092986706777452524]
2. Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS. The glass menagerie: Diatoms for novel applications in nanotechnology. Trends Biotechnol. 2009;27(2):116-27. [Link] [DOI:10.1016/j.tibtech.2008.11.003]
3. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359(6397):710-12. [Link] [DOI:10.1038/359710a0]
4. Rámila A, Munoz B, Pérez-Pariente J, Vallet-Regí M. Mesoporous MCM-41 as drug host system. J Sol Gel Sci Technol. 2003;26(1-3):1199-202. [Link] [DOI:10.1023/A:1020764319963]
5. Izquierdo-Barba I, Colilla M, Vallet-Regí M. Nanostructured mesoporous silicas for bone tissue regeneration. J Nanomater. 2008;2008:60. [Link] [DOI:10.1155/2008/106970]
6. Vallet-Regí M, Balas F, Colilla M, Manzano M. Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog Solid State Chem. 2008;36(3):163-91. [Link] [DOI:10.1016/j.progsolidstchem.2007.10.002]
7. Slowing I, Trewyn BG, Lin VS. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc. 2006;128(46):14792-3. [Link] [DOI:10.1021/ja0645943]
8. Aw MS, Simovic S, Yu Y, Addai-Mensah J, Losic D. Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol. 2012;223:52-8. [Link] [DOI:10.1016/j.powtec.2011.04.023]
9. Gordon R, Aguda BD. Diatom morphogenesis: Natural fractal fabrication of a complex microstructure. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 4-7 November, 1988, New Orleans, USA. Piscataway: IEEE; 1988. pp. 273-4. [Link] [DOI:10.1109/IEMBS.1988.94513]
10. Leonardo S, Prieto-Simón B, Campàs M. Past, present and future of diatoms in biosensing. TrAC Trends Anal Chem. 2016;79:276-85. [Link] [DOI:10.1016/j.trac.2015.11.022]
11. Ren F, Campbell J, Wang X, Rorrer GL, Wang AX. Enhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica. Opt Express. 2013;21(13):15308-13. [Link] [DOI:10.1364/OE.21.015308]
12. Rorrer GL, Chang CH, Liu SH, Jeffryes C, Jiao J, Hedberg JA. Biosynthesis of silicon-germanium oxide nanocomposites by the marine diatom Nitzschia frustulum. J Nanosci Nanotechnol. 2005;5(1):41-9. [Link] [DOI:10.1166/jnn.2005.005]
13. Qin T, Gutu T, Jiao J, Chang CH, Rorrer GL. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum. Acs Nano. 2008;2(6):1296-304. [Link] [DOI:10.1021/nn800114q]
14. Jeffryes C, Gutu T, Jiao J, Rorrer GL. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. Acs Nano. 2008;2(10):2103-12. [Link] [DOI:10.1021/nn800470x]
15. Townley HE, Woon KL, Payne FP, White-Cooper H, Parker AR. Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate. Nanotechnology. 2007;18(29):295101. [Link] [DOI:10.1088/0957-4484/18/29/295101]
16. Schröfel A, Kratošová G, Bohunická M, Dobročka E, Vávra I. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. J Nanoparticle Res. 2011;13(8):3207-16. [Link] [DOI:10.1007/s11051-011-0221-6]
17. Feurtet-Mazel A, Mornet S, Charron L, Mesmer-Dudons N, Maury-Brachet R, Baudrimont M. Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms. Environ Sci Pollut Res. 2016;23(5):4334-9. [Link] [DOI:10.1007/s11356-015-4139-x]
18. Ren F, Campbell J, Rorrer GL, Wang AX. Surface-enhanced Raman spectroscopy sensors from nanobiosilica with self-assembled plasmonic nanoparticles. IEEE J Sel Top Quantum Electron. 2014;20(3):127-32. [Link] [DOI:10.1109/JSTQE.2014.2301016]
19. Kumeria T, Bariana M, Altalhi T, Kurkuri M, Gibson CT, Yang W, et al. Graphene oxide decorated diatom silica particles as new nano-hybrids: Towards smart natural drug microcarriers. J Mater Chem B. 2013;1(45):6302-11. [Link] [DOI:10.1039/c3tb21051k]
20. Todd T, Zhen Z, Tang W, Chen H, Wang G, Chuang YJ, et al. Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors. Nanoscale. 2014;6(4):2073-6. [Link] [DOI:10.1039/c3nr05623f]
21. Aw MS, Simovic S, Addai-Mensah J, Losic D. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine. 2011;6(7):1159-73. [Link] [DOI:10.2217/nnm.11.29]
22. Bariana M, Aw MS, Losic D. Tailoring morphological and interfacial properties of diatom silica microparticles for drug delivery applications. Adv Powder Technol. 2013;24(4):757-63. [Link] [DOI:10.1016/j.apt.2013.03.015]
23. Townley HE, Parker AR, White‐Cooper H. Exploitation of diatom frustules for nanotechnology: Tethering active biomolecules. Adv Funct Mater. 2008;18(2):369-74. [Link] [DOI:10.1002/adfm.200700609]
24. Gale DK, Gutu T, Jiao J, Chang CH, Rorrer GL. Photoluminescence detection of biomolecules by antibody‐functionalized diatom biosilica. Adv Funct Mater. 2009;19(6):926-33. [Link] [DOI:10.1002/adfm.200801137]
25. Santra S, Liesenfeld B, Dutta D, Chatel D, Batich CD, Tan W, et al. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J Nanosci Nanotechnol. 2005;5(6):899-904. [Link] [DOI:10.1166/jnn.2005.146]
26. He X, Duan J, Wang K, Tan W, Lin X, He Ch. A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition. J Nanosci Nanotechnol. 2004;4(6):585-9. [Link] [DOI:10.1166/jnn.2004.011]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.