1. Li, X., Xu, H. &Wu, Q. (2007). Large‐scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnologyand bioengineering.98(4),764-771.
2. Spolaore, P., Joannis-Cassan, C., Duran ,E. &Isambert, A. (2006). Commercial applications of microalgae. Journal of bioscience and bioengineering.101(2),87-96.
3. Van Gerpen, J. (2004). Business management for biodiesel producers. Report from IowaState University for the National Renewable Energy Laboratory, NREL/SR-510-36242.
4. Demirbaş, A. (2003). Biodiesel fuels from vegetable oils via catalyticand non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy conversion and Management44(13),2093-2109.
5. Demirbas, A. (2004). Bioenergy, global warming, and environmental impacts. Energy Sources2,236-225.
6. Xiaohua, W. &Zhenmin, F. (2004). Biofuel use and its emission of noxious gases in rural China. Renewable and Sustainable Energy Reviews8(2),183-192.
7. Demirbas, A. (2008). Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy conversion and Management49(1),125-130.
8. Puppan, D. (2002). Environmental evaluation of biofuels. Social and Management Sciences10(1),95-116.
9. Demirbas, M. &Balat, M. (2006). Recent advances on the production and utilization trends of bio-fuels: a globalperspective. Energy conversion and Management47(15),2371-2381
10. Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel processing technology86(10),1059-1070
11. Fuga, J. &Collier, V.(2013).Genetic and metabolic engineering of escherichiaCOLI for biofuel productionasan alternative fuel source.
12. Hill, J., Nelson, E., Tilman, D., Polasky, S. &Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences103(30),11206-11210
13. Searchinger, T., Heimlich, R., Houghton ,R. A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D. &Yu, T.-H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science319(5867),1238-1240.
14. Azocar, L., Ciudad, G., Heipieper, H. J. &Navia, R. (2010). Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol88(3),621-636.
15. Rossi, M., Amaretti, A., Raimondi, S. &Leonardi, A. (2011). Getting lipids for biodiesel production from oleaginous fungi. Feedstocks and Processing Technologies.
16. Henry, S. A., Kohlwein, S. D. &Carman, G. M. (2012). Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics190(2),317-349.
17. Li, Q., Du, W. &Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol.756-749(5)80
18. assonova, D. R., Hammond, E. G. &Beattie, S. E. (2008). Oxidative stability of polyunsaturated triacylglycerols encapsulated in oleaginous yeast. Journal of the American Oil Chemists' Society85(8),711-716.
19. Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C .&Nicaud, J. M. (2009). Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res48(6),375-387.
20. Li, C. H., Cervantes, M., Springer, D. J., Boekhout, T., Ruiz-Vazquez, R. M., Torres-Martinez, S. R. ,Heitman, J. &Lee, S. C. (2011). Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog7(6),e1002086.
21. Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie86(11),807-815
22. Wynn, J. P., bin Abdul Hamid, A. &Ratledge, C. (1999a). The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology145(8),1911-1917
23. Wynn, J. P., bin Abdul Hamid, A. &Ratledge, C. (1999b). The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology145 ( Pt 8): 1911-1917
24. Li, Y., Adams, I. P., Wynn, J. P. &Ratledge, C. (2005). Cloning and characterization of a gene encoding a malic enzyme involved in anaerobic growth in Mucor circinelloides. Mycol Res109(Pt 4),461-468.
25. Wynn, J. P., Kendrick, A. &Ratledge, C. (1997). Sesamol as an inhibitor of growth and lipid metabolism in Mucor circinelloides via its action on malic enzyme. Lipids32(6),605-610
26. Zhang, Y., Adams, I. P. &Ratledge, C. (2007). Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology153(7),2013-2025.
27. Felizardo, P., Neiva Correia, M. J., Raposo, I., Mendes, J. F., Berkemeier, R. &Bordado, J. M. (2006). Production of biodiesel from waste frying oils. Waste management26(5), 487-494
28. Kulkarni, M. G. &Dalai, A. K. (2006). Waste cooking oil an economical source for biodiesel: a review. Industrial & engineering chemistry research45(9), 2901-2913.
29. Ma, Y. (2006). Microbial oils and its research advance. Chinese Journal of Bioprocess Engineering4(4), 7-11.
30. Oelkers, P., Cromley, D., Padamsee, M., Billheimer, J. T. &Sturley, S. L. (2002). The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem277(11),8877-8881.
31. Sandager ,L., Gustavsson, M. H., Ståhl, U., Dahlqvist, A., Wiberg, E., Banas, A., Lenman, M., Ronne, H. &Stymne, S. (2002). Storage lipid synthesis is non-essential in yeast. Journal of Biological Chemistry277(8),6478-6482.
32. Yan, S., Tang, Z., Su, W. &Sun, W. (2005). Proteomic analysis of salt stress-responsive proteins in rice root. PROTEOMICS5(1), 235-244
33. Dixon, B. (1991). Glycosylation Enhances Stability. Nature biotechnology9(5),418-418
34. Larkin, A. &Imperiali, B. (2011). The expanding horizons of asparagine-linked glycosylation. Biochemistry50(21),4411-4426.
35. Coleman, D. E., Rao, G. J., Goldsmith, E., Cook, P. F. &Harris, B. G. (2002). Crystal structure of the malic enzyme from Ascaris suum complexed with nicotinamide adenine dinucleotide at 2.3 Å resolution. Biochemistry41(22),6928-6938
36. Vorapreeda, T., Thammarongtham, C., Cheevadhanarak, S. &Laoteng, K. (2013). Repertoire of malic enzymes in yeast and fungi: insight into their evolutionary functional and structural significance. Microbiology159(Pt 12),2548-2557.
37. Long, J. J., Wang, J.-L. &Berry, J. O. (1994). Cloning and analysis of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. Journal of Biological Chemistry269(4), 2827-2833
38. Loeber, G., Infante, A., Maurer-Fogy, I., Krystek, E. &Dworkin, M. (1991). Human NAD (+)-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. Journal of Biological Chemistry266(5), 3016-3021
39. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D. &Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server.Springer
40. Kim, Y.-J., Shim, J.-S., Krishna, P. R., Kim, S.-Y., In, J.-G., Kim, M.-K. &Yang, D.-C. (2008).Isolation and characterization of a glutaredoxin gene from Panax ginseng CA Meyer. Plant molecular biology reporter26(4),335-349.
41. Van Der Giezen, M., Rechinger, K. B., Svendsen, I., Durand, R., Hirt, R. P., Fevre, M., Embley, T. M. &Prins, R. A. (1997). A mitochondrial‐like targeting signal on the hydrogenosomal malicenzyme from the anaerobic fungus Neocallimastix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria. Molecular microbiology23(1),11-21
42. ang, W., Zhang, S.,Tan, H. &Zhao, Z. K. (2010). Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Molecular biotechnology45(2),121-128.
43. Odabasi, Z., Paetznick, V. L., Rodriguez, J. R., Chen, E. &Ostrosky-Zeichner, L. (2004). In vitro activity of anidulafungin against selected clinically important mold isolates. Antimicrobial agents and chemotherapy48(5), 1912-1915
44. Somashekar, D., Venkateshwaran, G., Sambaiah, K. &Lokesh, B. (2003). Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochemistry38(12), 1719-1724.
45. De, B., Chaudhury, S. &Bhattacharyya, D. (1999). Effect of nitrogen sources on γ-linolenic acid accumulation in Spirulina platensis. Journal of the American Oil Chemists' Society76(1), 153-156
46. Zago, E., Botton, V., Alberton, D., Córdova, J. s., Yamamoto, C. I., Cocco, L. C., Mitchell, D. A. &Krieger, N. (2014). Synthesis of ethylic esters for biodieselpurposes using lipases naturally immobilized in a fermented solid produced using Rhizopus microsporus. Energy & Fuels28(8), 5197-5203
47. Van Leeuwen, J., Khanal, S. K., Pometto, A. L., Rasmussen, M. L. &Mitra, D. (2013).Fungi cultivation on alcohol fermentation stillage for useful products and energy savings. Google Patents
48. Peixoto-Nogueira, S., Sandrim, V., Guimaraes, L., Jorge, J., Terenzi, H. &Polizeli, M. (2008). Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess and biosystems engineering31(4), 329-334.
49. Colovos, C. &Yeates, T. O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein science: a publication of the Protein Society2(9),1511.
50. Xu, Y., Bhargava ,G., Wu, H., Loeber, G. &Tong, L. (1999). Crystal structure of human mitochondrial NAD (P)+-dependent malic enzyme: a new class of oxidative decarboxylases. Structure7(8),877-889.
51. Chang, G.-G. &Tong, L. (2003). Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry42(44),12721-1273.3.