Molecular Dynamics Simulation of Influences of Solvent Ionic Concentration on the Binding of MUC1–G Peptide and Anti-MUC1 Aptamer

Authors

1 Chemical Engineering Department, Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran

2 Organic & Biochemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract
Aims: Molecular insights into the analyte-bioreceptor interactions play a vital role in the efficacy of designing biosensors. Biosensors that utilize aptamers as bioreceptors are highly efficient with high specificity and reusability. Aptasensors can be used in a variety of conditions of in vivo or in vitro. The aim of this study was to study the changes in the solvent conditions of the binding of MUC1-G peptide and the anti-MUC1 aptamer.

Materials and Methods: The molecular dynamics simulation method has been used to investigate the change of molecular interactions due to selective variations in solvent conditions. The results can be used to reflect a variety of environments, in which the aptasensor utilizes anti-MUC1 S2.2 aptamer as a bioreceptor and MUC1–G peptide as a biomarker.

Findings: Based on the calculated binding energies, the medium containing 0.10M NaCl and anti-MUC1 S2.2 aptamer demonstrates the highest affinity toward the MUC1-G peptide among the studied concentrations of NaCl, and the arginine amino acid has a key role in the aptamer–peptide binding. Conclusion: The results of MD simulation indicated that the increase in the concentration of NaCl in the interaction environment leads to a decrease in binding energies; therefore, the binding affinity of the anti-MUC1 aptamer to MUC1-G peptide decreases. Insights from present modeling demonstrate the selectiveness and sensitivity to solvent conditions, which should be considered in the development of biosensors.

Keywords

Subjects


Mehrotra P. Biosensors and their applications - a review. J Oral Biol Craniofac Res. 2016;6(2):153-9.
https://doi.org/10.1016/j.jobcr.2015.12.002 [Link] [DOI:10.1016/j.jobcr.2015.12.002]
Jain KK. The handbook of biomarkers. New York: Springer Science & Business Media; 2010. [Link] [DOI:10.1007/978-1-60761-685-6]
Nath S, Mukherjee P. MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 2014;20(6):332-42. [Link] [DOI:10.1016/j.molmed.2014.02.007]
Yamaguchi T, Yokoyama Y, Ebata T, Matsuda A, Kuno A, Ikehara Y, et al. Verification of WFA-sialylated MUC1 as a sensitive biliary biomarker for human biliary tract cancer. Ann Surg Oncol. 2016;23(2):671-7. [Link] [DOI:10.1245/s10434-015-4878-4]
Prakash JS, Rajamanickam K. Aptamers and their significant role in cancer therapy and diagnosis. Biomedicines. 2015;3(3):248-69. [Link] [DOI:10.3390/biomedicines3030248]
Ku TH, Zhang T, Luo H, Yen TM, Chen PW, Han Y, et al. Nucleic acid aptamers: An emerging tool for biotechnology and biomedical sensing. Sensors (Basel). 2015;15(7):16281-313. [Link] [DOI:10.3390/s150716281]
Wang K, He MQ, Zhai FH, He RH, Yu YL. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta. 2017;166:87-92. [Link] [DOI:10.1016/j.talanta.2017.01.052]
Rhinehardt KL, Srinivas G, Mohan RV. Molecular dynamics simulation analysis of anti-MUC1 aptamer and mucin 1 peptide binding. J Phys Chem B. 2015;119(22):6571-83. [Link] [DOI:10.1021/acs.jpcb.5b02483]
Rhinehardt K, Mohan R, Srinivas G, Kelkar A. Analysis and understanding of aptamer and peptide molecular interactions: Application to mucin 1 (Muc1) aptasensor. 2nd International Symposium on Physics and Technology of Sensors (ISPTS), 7-10 March, 2015, Pune, India. Piscataway: IEEE; 2015. [Link] [DOI:10.1109/ISPTS.2015.7220133]
Ferreira CS, Matthews CS, Missailidis S. DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol. 2006;27(6):289-301. [Link] [DOI:10.1159/000096085]
Kikin O, D'Antonio L, Bagga PS. QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34(Web Server Issue):W676-82. [Link]
Jokar M, Safaralizadeh MH, Hadizadeh F, Rahmani F, Kalani MR. Apta-nanosensor preparation and in vitro assay for rapid Diazinon detection using a computational molecular approach. J Biomol Struct Dyn. 2017;35(2):343-53. [Link] [DOI:10.1080/07391102.2016.1140594]
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406-15. [Link] [DOI:10.1093/nar/gkg595]
Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N, et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 2012;40(14):e112. [Link] [DOI:10.1093/nar/gks339]
Dokurno P, Bates PA, Band HA, Stewart LM, Lally JM, Burchell JM, et al. Crystal structure at 1.95 A resolution of the breast tumour-specific antibody SM3 complexed with its peptide epitope reveals novel hypervariable loop recognition. J Mol Biol. 1998;284(3):713-28. [Link] [DOI:10.1006/jmbi.1998.2209]
Pichinuk E, Benhar I, Jacobi O, Chalik M, Weiss L, Ziv R, et al. Antibody targeting of cell-bound MUC1 SEA domain kills tumor cells. Cancer Res. 2012;72(13):3324-36. [Link] [DOI:10.1158/0008-5472.CAN-12-0067]
DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography. 2002; 40(1):82-92. [Link]
Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham III TE, DeBolt S et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun. 1995;91(1-3):1-41. [Link] [DOI:10.1016/0010-4655(95)00041-D]
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117(19):5179-97. [Link] [DOI:10.1021/ja00124a002]
Li LJ. Simultaneous detection of organic and inorganic substances in a mixed aqueous solution using a microwave dielectric sensor. Prog Electromagn Res C. 2010;14:163-71. [Link] [DOI:10.2528/PIERC10051308]
Kesimer M, Sheehan JK. Analyzing the functions of large glycoconjugates through the dissipative properties of their absorbed layers using the gel-forming mucin MUC5B as an example. Glycobiology. 2008;18(6):463-72. [Link] [DOI:10.1093/glycob/cwn024]
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14(1):33-8. [Link] [DOI:10.1016/0263-7855(96)00018-5]
Vilar S, Cozza G, Moro S. Medicinal chemistry and the Molecular Operating Environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr Top Med Chem. 2008;8(18):1555-72. [Link] [DOI:10.2174/156802608786786624]
Lobanov MIu, Bogatyreva NS, Galzitskaia OV. Radius of gyration is indicator of compactness of protein structure. Mol Biol (Mosk). 2008;42(4):701-6. [Russian] [Link]
Kong HY, Byun J. Nucleic acid aptamers: New methods for selection, stabilization, and application in biomedical science. Biomol Ther (Seoul). 2013;21(6):423-34. [Link] [DOI:10.4062/biomolther.2013.085]