Evaluation of changes expression of D1, mGluR1 and CD38 genes after electrical kindling and treatment with low-frequency stimulation in rat

Document Type : Original Research

Authors

Tarbiat Modares University

Abstract
Electrical Kindling is one of the most popular epileptic model techniques that cause seizures such as temporal lobe epilepsy. So far, various therapies have been used to treatment of epilepsy. Among these treatments, low-frequency stimulation (LFS) has been widely considered for improving effect on drug-resistant epilepsy, but its mechanism is not well understood. Since calcium entering to the cytoplasm and increasing its concentration is one of the reasons for seizure, metabotropic glutamate receptor (mGluR1), dopamine receptor (D1) and ADPR cyclase (CD38), which increased calcium in the cytoplasm from different pathways, were selected. With this aim that by examining the change in the expression of these genes, we help to clarify the LFS improvement effect. In this study, the hippocampus of rats was used and the changes in genes expression were investigated using real-time PCR technique. The results showed that the expression of all selected genes increased significantly after kindling and then after the LFS the expression of all was returned to sham value. Hence, one of the ways in which LFS interferes may be related to the pathway for calcium entering to the cytoplasm.

Keywords

Subjects


[1] Scott, B.W. (2013). Hippocampal Neurogenesis in the Kindling Model of Temporal Lobe Epilepsy. Experimental Neurology. 165 (1), 231-236.
[2] Van Nieuwenhuyse, B. (2015). Hippocampal deep brain stimulation for drug resistant epilepsy in a rodent model. Ghent University.
[3] DeGiorgio, C.M. and Krahl, S.E. ( 2013). Neurostimulation for drug-resistant epilepsy. Continuum: Lifelong Learning in Neurology. 19 (3), 743.
[4] Coffey, R.J. (2009). Deep brain stimulation devices: a brief technical history and review. Artificial organs. 33 (3), 208-220.
[5] Prince, D.A. (1978). Neurophysiology of epilepsy. Annual review of neuroscience. 1 (1), 395-415.
[6] Lossin, C., Wang, W., Thomas H., Vanoye, G., George, Jr. and Alfred, L. (2002). Molecular basis of an inherited epilepsy. Neuron. 34 (6), 877-884.
[7] De Falco, F., Bartiromo, U., Majello, L., Di Geronimo, G. and Mundo, P. ) 1992(. Calcium antagonist nimodipine in intractable epilepsy. Epilepsia. 33 (2), 343-345.
[8] Schumacher, T.B., Beck, H., Steinhauser, Ch., Schramm, J. and Elger, Ch. E. (1998). Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia. 39 (4), 355-363.
[9] Speckmann, E., H. Straub, and Köhling, R. (1993). Contribution of calcium ions to the generation of epileptic activity and antiepileptic calcium antagonism. Neuropsychobiology. 27 (3), 122-126.
[10] Kuak, W., Sobaniec, W., Wojtal, K. and Czuczwar, S. (2004). Calcium modulation in epilepsy. Pol J Pharmacol. 56 (1), 29-41.
[11] Kudin, A.P., Kudina, T. A., Seyfried, J., Vielhaber, S., Beck, H., Elger, Ch., E. and Kunz, W. S. (2002). Seizure‐dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. European Journal of Neuroscience. 15 (7), 1105-1114.
[12] Rajasekaran, K. (2005). Seizure-induced oxidative stress in rat brain regions: blockade by nNOS inhibition. Pharmacology Biochemistry and Behavior. 80 (2), 263-272.
[13] Nazıroğlu, M. and Övey, I. (2015). Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy. Neuroscience,. 293 (1), 55-66.
[14] Arzimanoglou, A., Hirsch, E., Nehlig, A., Castelnau, P., Gressens, P. and de Vasconcelos, A. P. (2002). Epilepsy and neuroprotection: an illustrated review. Epileptic disorders. 4 (1), 173-182.
[15] Kamphuis, W. Huisman, E., Wadman, WJ., Bergkamp, FJ. and Da Silva, FH. L. (1989). Transient increase of cytoplasmic calcium concentration in the rat hippocampus after kindling-induced seizures. An ultrastructural study with the oxalate-pyro-antimonate technique. Neuroscience. 29 (3), 667-674.
[16] Orciani, M., Trubiani, O., Guarnieri, S., Ferrero, E. and Di Primio, R. (2008). CD38 is constitutively expressed in the nucleus of human hematopoietic cells. Journal of cellular biochemistry. 105 (3), 905-912.
[17] Fernandez, J., Deaglio, S., Donati, D., Beusan, I. S., Corno, F., Aranega, A., Forni, M., Falini, B. and Malavasi, F. (1998). Analysis of the distribution of human CD38 and of its ligand CD31 in normal tissues. Journal of biological regulators and homeostatic agents. 12 (3), 81-91.
[18] Chini, E.N., Chini, CS., Ichiro, K., Takasawa, Sh. and Okamoto, H. (2002). CD38 is the major enzyme responsible for synthesis of nicotinic acid–adenine dinucleotide phosphate in mammalian tissues. Biochemical Journal. 362 (1), 125-130.
[19] Higashida, H., Salmina, A. B., Olovyannikova, R. Y., Hashii, M., Yokoyama, Sh., Koizumi, K., Jin, D., Liu, H., Lopatina, O. and Amina, S. (2007). Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochemistry international. 51(2-4), 192-199.
[20] Malavasi, F., Deaglio, S., Funaro, A., Ferrero, E., Horenstein, A. L., Ortolan, E., Vaisitti, T. and Aydin, S. (2008). Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiological reviews,. 88 (3), 841-886.
[21] Ohashi, H., Maruyama, T., Higashi-Matsumoto, H., Nomoto, T. and Takeuchi, Y. (2002). A Novel Binding Assay For Metabotropic Glutamate Receptors Using [3H] ʟ-Quisqualic Acid And Recombinant Receptors. Zeitschrift für Naturforschung C. 57 (3-4), 348-355.
[22] Hinoi, E., Ogita, K., Takeuchi, Y., Ohashi, H., Maruyama, T. and Yoneda, Y. (2001) Characterization with [3H] quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues. Neurochemistry international. 38 (3), 277-285.
[23] Chu, Z. and Hablitz, J.J. (2000). Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons. Brain research,. 879(1-2), 88-92.
[24] Conn, P.J. (2003). Physiological roles and therapeutic potential of metabotropic glutamate receptors. Annals of the New York Academy of Sciences,. 1003 (1) ,12-21.
[25] Moldrich, R.X., Chapman, A. G., De Sarro, G. and Meldrum, B. S. (2003). Glutamate metabotropic receptors as targets for drug therapy in epilepsy. European journal of pharmacology. 476 (1-2), 3-16.
[26] Wong, R.K., Bianchi, R., Chuang, Sh. and Merlin, L. R. (2005). Group I mGluR-induced epileptogenesis: distinct and overlapping roles of mGluR1 and mGluR5 and implications for antiepileptic drug design. Epilepsy Currents,. 5 (2), 63-68.
[27] Neyman, S. and Manahan‐Vaughan, D. (2008). Metabotropic glutamate receptor 1 (mGluR1) and 5 (mGluR5) regulate late phases of LTP and LTD in the hippocampal CA1 region in vitro. European Journal of Neuroscience,. 27(6), 1345-1352.
[28] Foster, W.J., Taylor, H. BC., Padamsey, Z., Jeans, A. F., Galione, A. and Emptage, N. J. (2018). Hippocampal mGluR1-dependent long-term potentiation requires NAADP-mediated acidic store Ca2+ signaling. Sci. Signal., 558 (11), 90-93.
[29] Rondou, P., Haegeman, G. and Van Craenenbroeck, K. (2010). The dopamine D4 receptor: biochemical and signalling properties. Cellular and molecular life sciences. 67 (12), 1971-1986.
[30] Girault, J.-A. and Greengard, P. (2004). The neurobiology of dopamine signaling. Archives of neurology. 61 (5), 641-644.
[31] Hasbi, A., Fan, Th., Alijaniaram, M., Nguyen, T., Perreault, M. L., O'Dowd, B. F. and George, S. R. (2009). Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth. Proceedings of the National Academy of Sciences. 106 (50), 21377-21382.
[32] Paxinos, G., Watson, Ch., Pennisi, M. and Topple, A. (1985). Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. Journal of neuroscience methods. 13 (2), 139-143.
[33] Paxinos, G. and Watson, C. (2006). The rat brain in stereotaxic coordinates: hard cover edition., Academic Press. 456.
[34] Racine, R., Rose, P. A. and Burnham, W. (1977). Afterdischarge thresholds and kindling rates in dorsal and ventral hippocampus and dentate gyrus. Canadian Journal of Neurological Sciences. 4 (4), 273-278.
[35] Livak, K., Schmittgen, T. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. 25 (4), 402-408.
[36] Rezaei, M., Sadeghian, A., Roohi, N., Shojaei, A. and Mirnajafi-Zadeh, J. (2017). Epilepsy and dopaminergic system. Physiology and Pharmacology. 21(1), 1-14.
[37] Chittajallu, R., Alford, S. and Collingridge, G. (1998). Ca2+ and synaptic plasticity. Cell calcium. 24 (5-6), 377-385.
[38] Bear, M.F. and Malenka, R.C. (1994). Synaptic plasticity: LTP and LTD. Current opinion in neurobiology,. 4 (3), 389-399.