Study of the Effect of Multi-Walled Carbon Nanotube on Human Hepcidin 20 by Using Molecular Dynamics Simulation

Document Type : Original Research

Authors

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

3 Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

Abstract
The interactions between carbon nanotubes (CNTs) and proteins were considered much attention. Advanced CNT applied biomolecules require mutual understanding of their interactions with biological molecules. Enhanced biomedical applications of CNTs have necessitated the need for the understanding their interaction with biomolecules. Non-covalent interactions of blood peptides, such as hepcidin, with carbon nanotubes, have important effects in a wide range of biological applications that are detected by analyzing the thermodynamic parameters of the interaction between CNTs and peptides. In addition, the effects of different parameters in order to evaluate how the interaction of CNTs with peptide affects and structural changes and stability of peptides were studied. In this study, based on molecular dynamics (MD) simulation, the structural changes of hepcidin 20 in interaction with multi walled carbon nanotubes (MWCNTs-COOH ) were investigated. The simulation results revealed that carbon nanotubes cause to loose the hepcidin structure and make structural changes in this peptide. On the other hand, the loose of the hepcidin structure may lead to a change in its activity. The results indicated that significant changes were made in the structure of hepcidin 20 in the presence of carbon nanotubes. The difference of parameter amounts calculated in heptidine 20 is related to their N-terminal, and loop regions.

Keywords

Subjects


1- Aschi, M., Bozzi, A.,Di Bartolomeo, R. , & Petruzzelli, R. The role of disulfide bonds and N‐terminus in the structural properties of hepcidins: Insights from molecular dynamics simulations. Biopolymers, 2010,93, 917–926. doi: 10.1002/bip.21499
2- Tomas Ganz. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation . BLOOD, 2003 ,102, (3), 783-788
3- Cambruzzi ,E ;Pêgas ,K, L ; Zettler,C,G ; Balbinotti Ferrari, M. Hemocromatose associada a carcinoma hepatocelular e neoplasias extra-hepáticas. Revista da AMRIGS, Porto Alegre, 2012,56 (1): 67-70
4- Seyed Yazdan Madani, Abraham Mandel, Alexander M Seifalian. A concise review of carbon nanotube's toxicology. Nano reviews,2013, 4: 21521
5- Mahmoodi Y, Mehrnejad F, Khalifeh K.Understanding the interactions of human follicle stimulating hormone with single-walled carbon nanotubes by molecular dynamics simulation and free energy analysis. Eur Biophys J. 2018, 47(1):49-57
6- J. Kolosnjaj-Tabi, K. B. Hartman, S. Boudjemaa, J. S. Ananta, G. Morgant, H. Szwarc, L. J. Wilson, and F. Moussa, “In vivo Behavior of Large Doses of Ultrashort and Full-Length Single-Walled Carbon Nanotubes after Oral and Intraperitoneal Administration to Swiss Mice,” ACS Nano, vol. 4, no. 3, pp. 1481–1492, 2010.
7- K. Lou, Z. Zhu, H. Zhang, Y. Wang, X. Wang, and J. Cao, “Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin,” Chem. Biol. Interact., vol. 243, pp. 54–61, 2016.
8- Ferrario, V., et al., Conformational Changes of Lipases in Aqueous Media: A Comparative Computational Study and Experimental Implications. Advanced Synthesis & Catalysis, 2011. 353: p. 2466-2480.
9- Funke, S.A., et al., Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution. Protein engineering, design & selection : PEDS, 2005. 18(11): p. 509-14.
10- Ottosson, J., L. Fransson, and K. Hult, Substrate entropy in enzyme enantioselectivity : An experimental and molecular modeling study of a lipase. Protein Science, 2002: p. 1462-1471.
11- R. Rasoolzadeh, F. Mehrnejad, M. Taghdir, P. Yaghmaei ; Effects of single-walled carbon nanotube on the conformation of human hepcidin: molecular dynamics simulation and binding free energy calculations. Journal of Biomolecular Structure and Dynamics, 2019 ;37(8):2125-2132
12- Peitsch, N.G.a.M.C., SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997. 18(15): p. 2714-2723.
13- Lindahl E, Hess B, Van Der Spoel D.GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling. 2001;7:306-17.
14- Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. Journal of computational chemistry. 2005;26:1701-18.
15- Wei Huang, Zhixiong Lin, and Wilfred F. van Gunsteren. Validation of the GROMOS 54A7 Force Field with Respect to β-Peptide Folding. Journal of Chemical Theory and Computation.2011, 7 (5), pp 1237–1243
16- غلامحسین صدیفیان، حسین رضایی مارنانی و فریبا رزمی منش. 1397. بررسی نفوذ داروهای آسپیرین و ایبوپروفن در غشاء دولایه لیپیدی به کمک شبیه سازی دینامیک مولکولی. مجله پژوهشهای سلولی و مولکولی، جلد31: 2
17- مهرنوش صفرزاده ، محمد پاژنگ ، فرامرز مهرنژاد ، فرحنوش دوستدار ، نادر چاپارزاده ، داود ربیعی فرادنبه ، احمد
یاری خسروشاهی و علیرضا محمدپور . 1393. بررسی نحوه تأثیر جهشها بر غیر فعال شدن آنزیم پیرازین آمیداز با شبیه سازی دینامیک
مولکولی. مجله پژوهشهای سلولی و مولکولی، جلد 28: 287-266