Full Potential Study and Molecular Docking Interaction of Anticancer Drugs with Au Nanoparticle

Document Type : Original Research

Authors

1 Ardakan University

2 Department of Chemistry, Payame Noor University, Tehran, Iran.

Abstract
In the present study, the structure of three common anticancer drugs including 6-thioguanine (6-TG), hydroxyurea (NH) and busulfan were optimized using quantum computational and obtained minimum energy for them. Also, optimization structure of gold nanoparticle was investigated by density functional theory (DFT). Finally, the binding energy of Au nanoparticle was calculated with the optimized structures of drugs. All different sites of drugs that can be interacted with nanoparticle were considered and the most stable structure was chosen for further study. These calculations were performed using FHI-aims which is a software package based on DFT. The bond length and the best interaction energy were reported in this work. To better investigation of the location of the interaction, the type of orbitals involved in the interaction and their shapes are shown. Gap energy analysis showed that the lowest energy was related to the complex of gold nanoparticle with 6-thioguanine, which confirms the chemical stability of this drug with nanoparticle. Investigations showed that the binding energy of gold nanoparticle with drugs is busulfan > hydroxyurea> 6-thioguanine so busulfan has more affinity to bind with gold nanoparticle.

Au nanoparticle as an anticancer drug deliver was studied with the molecular docking calculations. The human albumin serum (HSA) binding with three anticancer drugs was docked individually with Hex 8 software and their active sites of interaction were shown as well as. Finally, the binding energies and types of interactions such as electrostatic, van der Waals and hydrogen bonds between HSA and Au@ drugs were presented, clearly.

Keywords

Subjects


1- Costantino L, Boraschi D. Drug Discov Today. 2012;17(7-8):367-378.
2- De Jong WH, Borm PJ. Int J Nanomedicine. 2008;3(2):133-149.
3- Dykman L, Khlebtsov N. Chem Soc Rev. 2012;41(6):2256-2282.
4- Huo S, Jin S, Ma X, Xue X, Yang K, Kumar A, et al. ACS nano. 2014;8(6):5852-5862.
5- Sonavane G, Tomoda K, Makino K. Colloids Surf B. 2008;66(2):274-280.
6- Vinogradov SV, Bronich TK, Kabanov AV. Adv. 2002;54(1):135-147.
7- Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. SM. 2005;1(3):325-327.
8- Lin C-C, Yeh Y-C, Yang C-Y, Chen C-L, Chen G-F, Chen C-C, et al. J AM CHEM SOC. 2002;124(14):3508-3509.
9- Pan Yu, Neuss S, Leifert A, Fischler M, Wen F, Simon U, et al. SM. 2007;3(11):1941-1949.
10- Welsch W, Klein C, Von Schickfus M, Hunklinger S. Anal Chem. 1996;68(13):2000-2004.
11- Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with Plasmonic Nanosensors. Nanoscience and Technology: A Collection of Reviews from Nature Journals: World Scientific; 2010. p. 308-319.
12- Gannon CJ, Patra CR, Bhattacharya R, Mukherjee P, Curley SA. J Nanobiotechnology. 2008;6(1):2.
13- Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Nano Lett. 2007;7(7):1929-1934.
14- Jain RK. Annu Rev Biomed Eng. 1999;1(1):241-263.
15- Viudez AJ, Madueno R, Pineda T, Blazquez M. J Phys Chem B. 2006;110(36):17840-17847.
16- Hesabi M, Behjatmanesh-Ardakani R. COMPUT THEOR CHEM. 2017;1117:61-80.
17- Sierpe R, Noyong M, Simon U, Aguayo D, Huerta J, Kogan MJ, et al. Carbohydr Polym. 2017;177:22-31.
18- Wang R, Yue L, Yu Y, Zou X, Song D, Liu K, et al. ‎J Phys Chem C. 2016;120(26):14410-14415.
19- Hesabi M. Phys Chem Res. 2018;6(1):115-132.
20- Hesabi M, Behjatmanesh-Ardakani R. Appl Surf Sci. 2018;427:112-125.
21- Erb N, Harms DO, Janka-Schaub G. CANCER CHEMOTH PHARM. 1998;42(4):266-272.
22- Krynetskaia NF, Feng JY, Krynetski EY, Garcia JV, Panetta JC, Anderson KS, et al. FASEB J. 2001;15(11):1902-1908.
23- Narukawa M, Cortado R, Hacke K, An DS, Shimizu S, Kasahara N, et al. Int J Antimicrob Agents. 2013;42(13):S128- S129.
24- Lanzkron S, Strouse JJ, Wilson R, Beach MC, Haywood C, Park H, et al. Ann Intern Med. 2008;148(12):939-955.
25- Liebelt EL, Balk SJ, Faber W, Fisher JW, Hughes CL, Lanzkron SM, et al. Birth Defects Research Part B: Developmental and Reproductive Toxicology. 2007;80(4):259-366.
26- Meo A, Cassinerio E, Castelli R, Bignamini D, Perego L, Cappellini M. INT J LAB HEMATOL. 2008;30(5):425-431.
27- شهابی ج ، شاه آبادی ح ا ، علوی س ا ، کوهی مفتخر اصفهانی م ، ارجمند م ، ا سیف کردی ع ، اکبرزاده ع ، مجله تازه‌های بیوتکنولوژی سلولی- مولکولی، 1394: 5، 20.
28- Malär R, Sjöö F, Rentsch K, Hassan M, Güngör T. Therapeutic Drug Monitoring Is Essential for Intravenous Busulfan Therapy in Pediatric Hematopoietic Stem Cell Recipients. Pediatric transplantation. 2011;15(6):580-588.
29- Nieto Y, Thall P, Valdez B, Andersson B, Popat U, Anderlini P, et al. High-Dose Infusional Gemcitabine Combined with Busulfan and Melphalan with Autologous Stem-Cell Transplantation in Patients with Refractory Lymphoid Malignancies. BIOL BLOOD MARROW TR 2012;18(11):1677-1686.
30- Schiffman K, Bensinger W, Appelbaum F, Rowley S, Lilleby K, Clift R, et al. Phase Ii Study of High-Dose Busulfan, Melphalan and Thiotepa with Autologous Peripheral Blood Stem Cell Support in Patients with Malignant Disease. Bone marrow transplantation. 1996;17(6):943-950.
31- Iwamoto T, Hiraku Y, Oikawa S, Mizutani H, Kojima M, Kawanishi S. CANCER SCI. 2004;95(5):454-458.
32- Blum V, Scheffler M, Gehrke R, Hanke F, Havu P, Ren X, Reuter K. The Fritz Haber Institute Ab Initio Molecular Simulation Package (Fhiaims). 2009, http://www.fhi-berlin.mpg.de/aims.
33- Kohanoff J. Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods: Cambridge University Press; 2006.
34- Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett. 1996;77(18):3865-3668.
35- Hamann D, Schlüter M, Chiang C. Phys Rev Lett. 1979;43(20):1494-1497.
36- Garrett M MDS, Goodsell, Michael E. Pique, William “Lindy” Lindstrom, Ruth Huey, Stefano Forli, William E. Hart, Scott Halliday, Rik Belew and Arthur
37- Hetényi C, Van Der Spoel D. Efficient Docking of Peptides to Proteins without Prior Knowledge of the Binding Site. Protein science. 2002;11(7):1729-1737.
38- Hetényi C, Van Der Spoel D. Blind Docking of Drug‐Sized Compounds to Proteins with up to a Thousand Residues. FEBS letters. 2006;580(5):1447-1450.
39- http://www.rcsb.org.