Assessment of Low Level Laser (808 nm) Effects on E.coli -DH5α Viability and Growth

Document Type : Original Research

Authors

1 student

2 faculty member

3 full professor

4 Assistant professor

Abstract
NIR Laser application in bacteria is often focused on mortality and antibiotic efficacy. The literature records on this point are absolutely diverse from mortality in different degrees to immortality and even viability enhancement. The aim of this study is to investigate 808 nm laser effects on E.coli-DH5α viability and Growth with CFU, MTT and FCM assays. To obtain the purpose, bacteria in LB media put on with 808nm laser on 100 and 200 J/cm2 dosages and were investigated and compared by CFU, MTT and FCM assay. CFU assay results after 24 hours incubation were not significantly different between laser treatments and control. (P=0.06). In contrast, MTT assay results after 1 hours from laser treatment indicated significant deleterious effects in 200 J/cm2 laser treatment compared with control(P=0.006). On the other hand, FCM assay results of laser treatments with using of PI and Triton X100 not only approved MTT assay results but also revealed some dose dependent changes on bacteria ranging from increase membrane permeability to lethal damages. As a conclusion of the results in these method assays, we can state that these different laser doses produce diverse effects on viability and growth in E.coli-DH5α. Consequently the laser treatments could be planned for antibiotic purposes or enhancing gene transformation process.

Keywords

Subjects


1. Coluzzi, D. J., & Parker, S. P. (2017). Lasers in Dentistry—Current Concepts: Springer.400p
2. Schneckenburger, H., Hendinger, A., Sailer, R., Strauss, W. S., Lyttek, M., & Schmitt, M. (2002). Laser-assisted optoporation of single cells. Journal of biomedical optics, 7(3), 410-417.
3. Topaloglu, N., Gulsoy, M., & Yuksel, S. (2013). Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser. Photomedicine and laser surgery, 31(4), 155-162.
4. Canuto, K., Sergio, L., Marciano, R., Guimarães, O., Polignano, G., Geller, M., . . . Fonseca, A. (2013). DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain. Laser Physics Letters, 10(6), 065606. 8pp
5. da Silva Sergio, L. P., da Silva Marciano, R., Teixeira, G. R., da Silva Canuto, K., Polignano, G. A. C., Guimarães, O. R., . . . da Fonseca, A. d. S. (2013). Therapeutic low-intensity red laser for herpes labialis on plasmid survival and bacterial transformation. Photochemical & Photobiological Sciences, 12(5), 930-935.
6. Gursoy, H., Ozcakir-Tomruk, C., Tanalp, J., & Yılmaz, S. (2013). Photodynamic therapy in dentistry: a literature review. Clinical oral investigations, 17(4), 1113-1125.
7. Pirnat, S., Lukac, M., & Ihan, A. (2011). Study of the direct bactericidal effect of Nd: YAG and diode laser parameters used in endodontics on pigmented and nonpigmented bacteria. Lasers in medical science, 26(6), 755-761.
8. Beer, F., Buchmair, A., Wernisch, J., Georgopoulos, A., & Moritz, A. (2012). Comparison of two diode lasers on bactericidity in root canals—an in vitro study. Lasers in medical science, 27(2), 361-364.
9. Carlsson, L. Thesis. Supervisors: Otília Biksi, DVM & Dávid Sándor Kiss, PhD (2017). Impact of laser therapy on the healing processes. The University of Veterinary Medicine Department of Physiology and Biochemistry. Budapest, Hungary.44p
10. Nussbaum, E. L., Baxter, G. D., & Lilge, L. (2003). A review of laser technology and light-tissue interactions as a background to therapeutic applications of low intensity lasers and other light sources. Physical therapy reviews, 8(1), 31-44.
11. Schoop, U., Kluger, W., Moritz, A., Nedjelik, N., Georgopoulos, A., & Sperr, W. (2004). Bactericidal effect of different laser systems in the deep layers of dentin. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 35(2), 111-116.
12. da Fonseca Iwahara, L. K., de Paoli, F., & da Fonseca, A. d. S. (2019). Low-Power Red and Infrared Laser Effects on Cells Deficient in DNA Repair. Journal of lasers in medical sciences, 10(3), 157-162.
13. Wendy, C., Jerrold, S. P., Michael, L., Jason, L., Park, J., Judy, L., & Lee, H.-N. (2014). The effects of low level laser radiation on bacterial growth. Physical Therapy Rehabilitation Science, 3(1), 20-26.
14. Andraus, R. A. C., Maia, L. P., Santos, J. P. M. d., Mesquita, A. R., Santos, T. G., Braoios, A., & Prado, R. P. (2015). Analysis of low level laser therapy in vitro cultures of bacteria and fungi. Manual Therapy, Posturology & Rehabilitation Journal, 13, 6p.doi: 10.17784/mtprehabjournal.2015.13.304
15. Karu, T., Tiphlova, O., Esenaliev, R., & Letokhov, V. (1994). Two different mechanisms of low-intensity laser photobiological effects on Escherichia coli. Journal of photochemistry and photobiology B: Biology, 24(3), 155-161.
16. Nussbaum, E. L., Lilge, L., & Mazzulli, T. (2002). Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. Journal of clinical laser medicine & surgery, 20(6), 325-333.
17. Nussbaum, E.L., L. Lilge, and T. Mazzulli, .(2002). Effects of 810 nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. 31(5): p. 343-351.
18. Chakravarty, P., Qian, W., El-Sayed, M. A., & Prausnitz, M. R. (2010). Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nature nanotechnology, 5(8), 607-611.
19. Rahimzadeh, M., Sadeghizadeh, M., Najafi, F., Arab, S., & Mobasheri, H. (2016). Impact of heat shock step on bacterial transformation efficiency. Molecular Biology Research Communications, 5(4), 257.
20. Grela, E., Kozłowska, J., & Grabowiecka, A. (2018). Current methodology of MTT assay in bacteria–A review. Acta histochemica, 120(4), 303-311.
21. Feng, J., Wang, T., Zhang, S., Shi, W., & Zhang, Y. (2014). An optimized SYBR Green I/PI assay for rapid viability assessment and antibiotic susceptibility testing for Borrelia burgdorferi. PloS one, 9(11), e111809. 8p. doi: 10.1371/journal.pone.0111809.
22. Wang, H., Cheng, H., Wang, F., Wei, D., & Wang, X. (2010). An improved 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. Journal of microbiological methods, 82(3), 330-333.
23. Lloyd, D. (1993). Flow cytometry in microbiology: Springer. london.200p.
24. Robinson, J. P. (2018). Overview of Flow Cytometry and Microbiology. Current protocols in cytometry, 84(1), e37.
25. Hibst, R., Graser, R., Udart, M., & Stock, K. (2010). Mechanism of high‐power NIR laser bacteria inactivation. Journal of biophotonics, 3(5‐6), 296-303.
26. Nussbaum, E. (2017, August). Comparing the effects on bacterial growth of continuous and pulsed 810 nm laser irradiation over a wide range of radiant exposure. In Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging (Vol. 10313, p. 103133A). International Society for Optics and Photonics.
27. Zhang, J., & Liu, X. (2002). Study on tetrazolium salt colorimetric assay for growth and survival of bacteria. Wei sheng yan jiu.Journal of hygiene research, 31(5), 361-363.
28. Hamblin, M. R., & Demidova, T. N. (2006). Mechanisms of low level light therapy. Paper presented at the Mechanisms for low-light therapy. 12p. doi: 10.1117/12.646294.
29. Percival, S. L., Francolini, I., & Donelli, G. (2015). Low-level laser therapy as an antimicrobial and antibiofilm technology and its relevance to wound healing. Future microbiology, 10(2), 255-272.
30. Kirchhoff, C., & Cypionka, H. (2017). Propidium ion enters viable cells with high membrane potential during live-dead staining. Journal of microbiological methods, 142, 79-82.
31. Feng, J., Yee, R., Zhang, S., Tian, L., Shi, W., Zhang, W.-H., & Zhang, Y. (2018). A rapid growth-independent antibiotic resistance detection test by SYBR green/propidium iodide viability assay. Frontiers in medicine, 5, 127. 11p.
32. Grégori, G., Denis, M., Sgorbati, S., & Citterio, S. (2018). Resolution of Viable and Membrane‐Compromised Free Bacteria in Aquatic Environments by Flow Cytometry. Current protocols in cytometry, 85(1), e42. 9p.
33. Arumuganathan, K., & Earle, E. (1991). Estimation of nuclear DNA content of plants by flow cytometry. Plant molecular biology reporter, 9(3), 229-241.
34. Pozarowski, P., & Darzynkiewicz, Z. (2004). Analysis of cell cycle by flow cytometry. In Checkpoint controls and cancer . Methods in Molecular Biology, vol 281,301-311,
35. Riccardi, C., & Nicoletti, I. (2006). Analysis of apoptosis by propidium iodide staining and flow cytometry. Nature protocols, 1(3), 1458-1461.
36. Rosenberg, M., Azevedo, N. F., & Ivask, A. (2019). Propidium iodide staining underestimates viability of adherent bacterial cells. Scientific reports, 9(1), 1-12.
37. Schnaitman, C. A. (1971). Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. Journal of bacteriology, 108(1), 545-552.
38. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., & Simons, K. (2003). Resistance of cell membranes to different detergents. Proceedings of the National Academy of Sciences, 100(10), 5795-5800.
39. Weiner, J. H., MacIsaac, D. P., Bishop, R. E., & Bilous, P. T. (1988). Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity. Journal of bacteriology, 170(4), 1505-1510.
40. Yeagle, P. L. (2016). The membranes of cells: Academic Press.452p.
41.Rosenberg, M., Azevedo, N. F., & Ivask, A. (2019). Propidium iodide staining underestimates viability of adherent bacterial cells. Scientific reports, 9(1), 1-12.
42. Grégori, G., Citterio, S., Ghiani, A., Labra, M., Sgorbati, S., Brown, S., & Denis, M. (2001). Resolution of viable and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double staining. Applied and Environmental Microbiology, 67(10), 4662-4670.