Identification, cloning, and expression of the novel recombinant xylanase with stable structure from the sheep rumen microbiota

Document Type : Original Research

Authors

1 Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.

2 Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran

Abstract
Enzymes play an essential role in catalyzing the reactions for multiple industrial applications. One of these critical industries with a worldwide application is paper and pulp, which is cost-effective in increasing attention. Xylanases are potential enzymes that proved their abilities in a broad range of applications, specifically in the paper and pulp industry as a biobleaching agent and dye removal biocatalyst. In these decades, the production of novel enzymes from natural sources is conceivable, especially with applying the culture-independent method of metagenome. This practical approach provides the opportunity to identify the novel enzymes from uncultivable microbial diversities. Concerning the importance of the thermostable enzymes for industrial applications and their better action in harsh conditions, this study aimed to identify novel thermostable xylanase from metagenomic data of sheep rumen by applying the in-silico screening. The thermostable xylanase was extracted from the ruminal DNA and after cloning and expression named PersiXyn5. The enzymeschr('39') kinetic parameters, including Km, Vmax, and its specific activity, were examined. The enzyme was optimally active at 80 and pH 8 and could retain 58% of its maximum activity after 2h of incubation at 90 . The thermostable, alkali PersiXyn5 was an efficient enzyme in the paper industry and poultry feed and fuel applications.

Keywords

Subjects


منابع
[1] W. V. Dashek, Methods in Plant Biochemistry and Molecular Biology, 2018. https://doi.org/10.1201/9781351074483.
[2] R. Maheshwari, G. Bharadwaj, M.K. Bhat, Thermophilic Fungi: Their Physiology and Enzymes, Microbiol. Mol. Biol. Rev. (2000). https://doi.org/10.1128/mmbr.64.3.461-488.2000.
[3] B. Battan, J. Sharma, S.S. Dhiman, R.C. Kuhad, Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry, Enzyme Microb. Technol. 41 (2007) 733–739.
[4] L. Gebicka, E. Banasiak, Flavonoids as reductants of ferryl hemoglobin., Acta Biochim. Pol. 56 (2009) 509–13.
[5] J.S. Eun, K.A. Beauchemin, H. Schulze, Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage, J. Dairy Sci. (2007). https://doi.org/10.3168/jds.S0022-0302(07)71629-6.
[6] X. Li, Y. She, B. Sun, H. Song, Y. Zhu, Y. Lv, H. Song, Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp, Biochem. Eng. J. (2010). https://doi.org/10.1016/j.bej.2010.07.006.
[7] F. Woldesenbet, A.P. Virk, N. Gupta, P. Sharma, Effect of microwave irradiation on xylanase production from wheat bran and biobleaching of eucalyptus kraft pulp, Appl. Biochem. Biotechnol. (2012). https://doi.org/10.1007/s12010-012-9663-2.
[8] B.R. Goluguri, C. Thulluri, M. Cherupally, N. Nidadavolu, D. Achuthananda, L.N. Mangamuri, U. Addepally, Potential of thermo and alkali stable xylanases from Thielaviopsis Basicola (MTCC-1467) in biobleaching of wood kraft pulp, Appl. Biochem. Biotechnol. (2012). https://doi.org/10.1007/s12010-012-9765-x.
[9] M. Ayyachamy, T.M. Vatsala, Production and partial characterization of cellulase free xylanase by Bacillus subtilis C 01 using agriresidues and its application in biobleaching of nonwoody plant pulps, Lett. Appl. Microbiol. (2007). https://doi.org/10.1111/j.1472-765X.2007.02223.x.
[10] D. Verma, T. Satyanarayana, Production of cellulase-free xylanase by the recombinant Bacillus subtilis and its applicability in paper pulp bleaching, Biotechnol. Prog. (2013). https://doi.org/10.1002/btpr.1826.
[11] V.B. Damiano, D.A. Bocchini, E. Gomes, R. Da Silva, Application of crude xylanase from Bacillus licheniformis 77-2 to the bleaching of eucalyptus Kraft pulp, World J. Microbiol. Biotechnol. (2003). https://doi.org/10.1023/A:1023244911314.
[12] N. Kulkarni, A. Shendye, M. Rao, Molecular and biotechnological aspects of xylanases, FEMS Microbiol. Rev. (1999). https://doi.org/10.1016/S0168-6445(99)00006-6.
[13] M. Morrison, P.B. Pope, S.E. Denman, C.S. McSweeney, Plant biomass degradation by gut microbiomes: more of the same or something new?, Curr. Opin. Biotechnol. (2009). https://doi.org/10.1016/j.copbio.2009.05.004.
[14] M.R. Rondon, R.M. Goodman, J. Handelsman, The Earth’s bounty: assessing and accessing soil microbial diversity, Trends Biotechnol. 17 (1999) 403–409.
[15] A. Verenium, Pioneer of 21st Century Bioscience, is Working to Transform Industries, Available Online Www. Diver-Sa. Com (Access 1 July, 2013). (2013).
[16] T. Uchiyama, K. Miyazaki, Functional metagenomics for enzyme discovery: challenges to efficient screening, Curr. Opin. Biotechnol. 20 (2009) 616–622. https://doi.org/10.1016/j.copbio.2009.09.010.
[17] M. Ferrer, A. Beloqui, K.N. Timmis, P.N. Golyshin, Metagenomics for mining new genetic resources of microbial communities, J. Mol. Microbiol. Biotechnol. (2008). https://doi.org/10.1159/000142898.
[18] J.A. Gilbert, C.L. Dupont, Microbial Metagenomics: Beyond the Genome, Ann. Rev. Mar. Sci. (2011). https://doi.org/10.1146/annurev-marine-120709-142811.
[19] Y. Hu, G. Zhang, A. Li, J. Chen, L. Ma, Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach, Appl. Microbiol. Biotechnol. 80 (2008) 823.
[20] X.C. Mo, C.L. Chen, H. Pang, Y. Feng, J.X. Feng, Identification and characterization of a novel xylanase derived from a rice straw degrading enrichment culture, Appl. Microbiol. Biotechnol. (2010). https://doi.org/10.1007/s00253-010-2712-2.
[21] F. Warnecke, P. Luginbühl, N. Ivanova, M. Ghassemian, T.H. Richardson, J.T. Stege, M. Cayouette, A.C. McHardy, G. Djordjevic, N. Aboushadi, R. Sorek, S.G. Tringe, M. Podar, H.G. Martin, V. Kunin, D. Dalevi, J. Madejska, E. Kirton, D. Platt, E. Szeto, A. Salamov, K. Barry, N. Mikhailova, N.C. Kyrpides, E.G. Matson, E.A. Ottesen, X. Zhang, M. Hernández, C. Murillo, L.G. Acosta, I. Rigoutsos, G. Tamayo, B.D. Green, C. Chang, E.M. Rubin, E.J. Mathur, D.E. Robertson, P. Hugenholtz, J.R. Leadbetter, Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite, Nature. 450 (2007) 560–565. https://doi.org/10.1038/nature06269.
[22] R. Li, R. Kibblewhite, W.J. Orts, C.C. Lee, Molecular cloning and characterization of multidomain xylanase from manure library, World J. Microbiol. Biotechnol. 25 (2009) 2071–2078.
[23] Y. Kobayashi, Inclusion of novel bacteria in rumen microbiology : Need for basic and applied science, (2006) 375–385. https://doi.org/10.1111/j.1740-0929.2006.00362.x.
[24] W.J.A.N.P.C. Zhenming, Y.E.J.L.I.U. Jianxin, Construction and Analysis of Fosmid Library of Rumen Microbiota of Hu Sheep [J], Chinese J. Anim. Nutr. 2 (2010) 18.
[25] Z. Qiu, P. Shi, H. Luo, Y. Bai, T. Yuan, P. Yang, S. Liu, B. Yao, A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry, Enzyme Microb. Technol. (2010). https://doi.org/10.1016/j.enzmictec.2010.02.003.
[26] A. Walia, P. Mehta, S. Guleria, C.K. Shirkot, Modification in the properties of paper by using cellulasefree xylanase produced from alkalophilic cellulosimicrobium cellulans CKMX1 in biobleaching of wheat straw pulp, Can. J. Microbiol. (2015). https://doi.org/10.1139/cjm-2015-0178.
[27] H. Liao, S. Sun, P. Wang, W. Bi, S. Tan, Z. Wei, X. Mei, D. Liu, W. Raza, Q. Shen, Y. Xu, A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: Cloning, purification, and insights into the influence of metal ions on xylanase activity, J. Ind. Microbiol. Biotechnol. (2014). https://doi.org/10.1007/s10295-014-1453-0.
[28] M.L.T.M. Polizeli, A.C.S. Rizzatti, R. Monti, H.F. Terenzi, J.A. Jorge, D.S. Amorim, Xylanases from fungi: Properties and industrial applications, Appl. Microbiol. Biotechnol. (2005). https://doi.org/10.1007/s00253-005-1904-7.
[29] A. Walia, S. Guleria, P. Mehta, A. Chauhan, J. Parkash, Microbial xylanases and their industrial application in pulp and paper biobleaching: a review, 3 Biotech. 7 (2017) 11.
[30] J.L. Adrio, A.L. Demain, Microbial enzymes: tools for biotechnological processes, Biomolecules. 4 (2014) 117–139.
[31] J. Gharechahi, H.S. Zahiri, K.A. Noghabi, G.H. Salekdeh, In-depth diversity analysis of the bacterial community resident in the camel rumen, Syst. Appl. Microbiol. 38 (2015) 67–76.
[32] S. Ariaeenejad, E. Hosseini, M. Maleki, K. Kavousi, A.A. Moosavi-Movahedi, G.H. Salekdeh, Identification and characterization of a novel thermostable xylanase from camel rumen metagenome, Int. J. Biol. Macromol. 126 (2019) 1295–1302. https://doi.org/10.1016/j.ijbiomac.2018.12.041.
[33] J. Gharechahi, G.H. Salekdeh, Biotechnology for Biofuels A metagenomic analysis of the camel rumen ’ s microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation, Biotechnol. Biofuels. (2018) 1–19. https://doi.org/10.1186/s13068-018-1214-9.
[34] S. Ariaeenejad, M. Maleki, E. Hosseini, K. Kavousi, A.A. Moosavi-Movahedi, G.H. Salekdeh, Mining of camel rumen metagenome to identify novel alkali-thermostable xylanase capable of enhancing the recalcitrant lignocellulosic biomass conversion, Bioresour. Technol. 281 (2019) 343–350. https://doi.org/10.1016/j.biortech.2019.02.059.
[35] L.A. Kelley, S. Mezulis, C.M. Yates, M.N. Wass, M.J.E. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc. 10 (2015) 845.
[36] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, B.A. Cuche, E. De castro, C. Lachaize, P.S. Langendijk-Genevaux, C.J.A. Sigrist, The 20 years of PROSITE, Nucleic Acids Res. (2008). https://doi.org/10.1093/nar/gkm977.
[37] M.J. Bailey, P. Biely, K. Poutanen, Interlaboratory testing of methods for assay of xylanase activity, J. Biotechnol. 23 (1992) 257–270. https://doi.org/10.1016/0168-1656(92)90074-J.
[38] R.D. Kamble, A.R. Jadhav, Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation, Int. J. Microbiol. 2012 (2012).
[39] A. Marchler-Bauer, Y. Bo, L. Han, J. He, C.J. Lanczycki, S. Lu, F. Chitsaz, M.K. Derbyshire, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, F. Lu, G.H. Marchler, J.S. Song, N. Thanki, Z. Wang, R.A. Yamashita, D. Zhang, C. Zheng, L.Y. Geer, S.H. Bryant, CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures, Nucleic Acids Res. 45 (2017) D200–D203. https://doi.org/10.1093/nar/gkw1129.
[40] N. Boucherba, M. Gagaoua, A.B. Darenfed, C. Bouiche, K. Bouacem, Biochemical properties of a new thermo ‑ and solvent ‑ stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3, Bioresour. Bioprocess. (2017). https://doi.org/10.1186/s40643-017-0161-9.
[41] K. Wang, R. Cao, M. Wang, Q. Lin, R. Zhan, H. Xu, S. Wang, Biotechnology for Biofuels A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1 . 5 L in pretreated corn stover hydrolysis, Biotechnol. Biofuels. (2019) 1–13. https://doi.org/10.1186/s13068-019-1389-8.
[42] S. Ariaeenejad, M. Maleki, E. Hosseini, K. Kavousi, A.A. Moosavi-Movahedi, G.H. Salekdeh, Mining of camel rumen metagenome to identify novel alkali-thermostable xylanase capable of enhancing the recalcitrant lignocellulosic biomass conversion, Bioresour. Technol. 281 (2019). https://doi.org/10.1016/j.biortech.2019.02.059.
[43] C. Ding, M. Li, Y. Hu, High-activity production of xylanase by Pichia stipitis: Purification, characterization, kinetic evaluation and xylooligosaccharides production, Elsevier B.V, 2018. https://doi.org/10.1016/j.ijbiomac.2018.05.128.
[44] S. Kumar, I. Haq, J. Prakash, S. Kumar, Purification , characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp, 3 Biotech. 7 (2017) 1–12. https://doi.org/10.1007/s13205-017-0615-y.
[45] C. Somboon, S. Boonrung, S. Katekaew, J. Ekprasert, Purification and characterization of low molecular weight alkali stable xylanase from Neosartorya spinosa UZ-2-11 Mycoscience Puri fi cation and characterization of low molecular weight alkali stable xylanase from Neosartorya spinosa UZ-2-11, Mycoscience. 61 (2020) 128–135. https://doi.org/10.1016/j.myc.2020.01.004.
[46] P. V Giridhar, T.S. Chandra, Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp . TSCPVG, 45 (2010) 1730–1737. https://doi.org/10.1016/j.procbio.2010.07.012.
[47] M.S.H. Zheng, L.M.J. Sun, X.Z.J.Z.Y. Liu, F. Lu, Direct cloning , expression of a thermostable xylanase gene from the metagenomic DNA of cow dung compost and enzymatic production of xylooligosaccharides from corncob, Biotechnol. Lett. 37 (2015) 1877–1886. https://doi.org/10.1007/s10529-015-1857-6.
[48] B.R. Goluguri, C. Thulluri, U. Addepally, P.R. Shetty, Novel alkali-thermostable xylanase from Thielaviopsis basicola (MTCC 1467): Purification and kinetic characterization, Int. J. Biol. Macromol. 82 (2016) 823–829. https://doi.org/10.1016/j.ijbiomac.2015.10.055.
[49] L. Ping, M. Wang, X. Yuan, F. Cui, D. Huang, W. Sun, B. Zou, S. Huo, H. Wang, Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacu, Int. J. Biol. Macromol. (2017). https://doi.org/10.1016/j.ijbiomac.2017.11.130.
[50] B. Kumar, B. Massarat, A.Á.P.Á.A. Á, Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28, (2011) 161–171. https://doi.org/10.1007/s13205-011-0020-x.
[51] D. Sharma, R. Chaudhary, J. Kaur, S.K. Arya, Greener approach for pulp and paper industry by Xylanase and Laccase, Biocatal. Agric. Biotechnol. (2020). https://doi.org/10.1016/j.bcab.2020.101604.
[52] A. Sridevi, A. Sandhya, G. Ramanjaneyulu, G. Narasimha, P.S. Devi, Biocatalytic activity of Aspergillus niger xylanase in paper pulp biobleaching, 3 Biotech. (2016). https://doi.org/10.1007/s13205-016-0480-0.
[53] V.K. Nathan, M.E. Rani, G. Rathinasamy, K.N. Dhiraviam, Low molecular weight xylanase from Trichoderma viride VKF3 for bio-bleaching of newspaper pulp, BioResources. 12 (2017) 5264–5278.
[54] N.V. Kumar, M.E. Rani, R. Gunaseeli, N.D. Kannan, Paper pulp modification and deinking efficiency of cellulase-xylanase complex from Escherichia coli SD5, Int. J. Biol. Macromol. 111 (2018) 289–295.