[1] P.J. Bates, D.A. Laber, D.M. Miller, S.D. Thomas, J.O. Trent. (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol. 86, 151-164.
[2] P.J. Bates, J.B. Kahlon, S.D. Thomas, J.O. Trent, D.M. Miller. (1999) Antiproliferative activity ofG-rich oligonucleotides correlates with protein binding. The Journal of biological chemistry. 274, 26369-26377.
[3] V. Dapic, V. Abdomerovic, R. Marrington, J. Peberdy, A. Rodger, J.O. Trent, P.J. Bates. (2003)
Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids
Res. 31, 2097-2107.
[4] Dapić V, Bates PJ, Trent JO, Rodger A, Thomas SD, M. DM. (2002) Antiproliferative activity of Gquartet-forming oligonucleotides with backbone and sugar modifications. Biochemistry. 41,
3676-3685.
[5] Sannohe, Yuta, and Hiroshi Sugiyama. (2010) "Overview of formation of G‐quadruplex structures." Current protocols in nucleic acid chemistry. 40.1, 17-2.
[6] W. Jia, Z. Yao, J. Zhao, Q. Guan, L. Gao. (2017) New perspectives of physiological and pathological functions of nucleolin (NCL). Life sciences. 186, 1-10.
[7] T. Le Trinh, G. Zhu, X. Xiao, W. Puszyk, K. Sefah, Q. Wu, W. Tan, C. Liu. (2015) A synthetic
aptamer-drug adduct for targeted liver cancer therapy. PLoS One. 10(11), e0136673.
[8] S.H. Rajabnejad, A. Mokhtarzadeh, K. Abnous, S.M. Taghdisi, M. Ramezani, B.M. Razavi,
(2018) Targeted delivery of melittin to cancer cells by AS1411 anti-nucleolin aptamer. Drug
development and industrial pharmacy. 44(6), 982-987.
[9] F.S.M. Tekie, M. Soleimani, A. Zakerian, M. Dinarvand, M. Amini, R. Dinarvand, E.
Arefian, F. Atyabi. (2018) Glutathione responsive chitosan-thiolated dextran conjugated miR-145
nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydrate polymers. 201,
131-140.
[10] R. Zhang, S.-B. Wang, W.-G. Wu, R.K. Kankala, A.-Z. Chen, Y.-G. Liu, J.-Q. (2017) Fan, Codelivery of doxorubicin and AS1411 aptamer by poly (ethylene glycol)-poly (β-amino esters)
polymeric micelles for targeted cancer therapy. Journal of Nanoparticle Research. 19,
224.
[11] Liao, Zi-Xian, et al. (2015) "An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance." Journal of controlled release. 208, 42-51.
[12] Li, Xin, et al. (2015) "Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles." Nanomedicine: Nanotechnology, Biology and Medicine. 11.1, 175-184.
[13] Peng, Li-Hua, et al. (2015) "Cell membrane capsules for encapsulation of chemotherapeutic and cancer cell targeting in vivo." ACS applied materials & interfaces. 7.33, 18628-18637.
[14] Gao, Huile, et al. (2012) "Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles." Biomaterials. 33.20, 5115-5123.
[15] Dolmans, D.E., Fukumura, D. and Jain, R.K. (2003) Photodynamic therapy for cancer. Nature reviews cancer. 3, 380-387.
[16] Cao, Z., Tong, R., Mishra, A., Xu, W., Wong, G.C., Cheng, J. and Lu, Y. (2009) Reversible Cell‐Specific Drug Delivery with Aptamer‐Functionalized Liposomes. Angewandte Chemie International Edition. 48(35), 6494-6498.
[17] Carvalho, Josué, et al. (2019) "Aptamer-based targeted Delivery of a G-quadruplex Ligand in Cervical Cancer Cells." Scientific reports. 9.1, 1-12.
[18] Y.A. Shieh, S.J. Yang, M.F. Wei, M.J. Shieh. (2010) Aptamer-based tumor-targeted drug delivery
for photodynamic therapy. ACS nano. 4, 1433-1442.
[19] Wei, Chunying, et al. (2006) "A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs." Biochemistry. 45.21, 6681-6691.
[20] Zhang, HuiJuan, et al. (2008) "Interactions between meso-tetrakis (4-(N-methylpyridiumyl)) porphyrin TMPyP4 and DNA G-quadruplex of telomeric repeated sequence TTAGGG." Science in China Series B: Chemistry. 51.5, 452-456.
[21] Cogoi, Susanna, and Luigi E. Xodo. (2006) "G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription." Nucleic acids research. 34.9, 2536-2549.
[22] Waller, Zoë AE, et al. (2016) "Control of bacterial nitrate assimilation by stabilization of G-quadruplex DNA." Chemical Communications. 52.92, 13511-13514.
[23] Zidanloo, Saeedeh Ghazaey, et al. (2016) "Downregulation of the WT 1 gene expression via TMPyP4 stabilization of promoter G-quadruplexes in leukemia cells." Tumor Biology. 37.7, 9967-9977.
[24] Ofer, Noa, et al. (2009) "The quadruplex r (CGG) n destabilizing cationic porphyrin TMPyP4 cooperates with hnRNPs to increase the translation efficiency of fragile X premutation mRNA." Nucleic acids research. 37.8, 2712-2722.
[25] Singh, Anju, Savita Joshi, and Shrikant Kukreti. (2020) "Cationic porphyrins as destabilizer of a G-quadruplex located at the promoter of human MYH7 β gene." Journal of Biomolecular Structure and Dynamics. 38.16, 4801-4816.
[26] Andrew, Elizabeth J., et al. (2013) "Pentose phosphate pathway function affects tolerance to the G-quadruplex binder TMPyP4." PloS one. 8.6, e66242.
[27] Cantor, C. R., Warshaw, M. M., & Shapiro, H. (1970). Oligonucleotide interactions. III. Circular dichroism studies of the conformation of deoxyoligonucleolides. Biopolymers: Original Research on Biomolecules. 9(9), 1059-1077.
[28] Zhang, H., Xiao, X., Wang, P., Pang, S., Qu, F., Ai, X., & Zhang, J. (2009). Conformational conversion of DNA G-quadruplex induced by a cationic porphyrin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(1), 243-247.
[29] Dehgani, K.M. (2010) A comprehensive description of Biophysics. 1st ed.
[30] Wei, Chunying, et al. (2006) "A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs." Biochemistry. 45.21, 6681-6691.
[31] Le, Vu H., Narayana Nagesh, and Edwin A. Lewis. (2013) "Bcl-2 promoter sequence G-quadruplex interactions with three planar and non-planar cationic porphyrins: TMPyP4, TMPyP3, and TMPyP2." PloS one. 8.8, e72462.
[32] Lakowicz, J. R. (Ed.). (2013) Principles of fluorescence spectroscopy. Springer science & business media.
[33] Zhao, L., Liu, R., Zhao, X., Yang, B., Gao, C., Hao, X., & Wu, Y. (2009) New strategy for the evaluation of CdTe quantum dot toxicity targeted to bovine serum albumin. Science of the total environment. 407.18, 5019-5023.
[34] Suryawanshi, V. D., Walekar, L. S., Gore, A. H., Anbhule, P. V., & Kolekar, G. B. (2016) Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. Journal of Pharmaceutical Analysis. 6.1, 56-63.
[35] Asadi, M., Safaei, E., Ranjbar, B., & Hasani, L. (2004) Thermodynamic and spectroscopic study on the binding of cationic Zn (II) and Co (II) tetrapyridinoporphyrazines to calf thymus DNA: the role of the central metal in binding parameters. New journal of chemistry. 28.10, 1227-1234.
[36] Ranjbar, B., & Gill, P. (2009). Circular dichroism techniques: biomolecular and nanostructural analyses‐a review. Chemical biology & drug design, 74(2), 101-120.
[37] Carvalho, J., Queiroz, J.A., Cruz, C. (2017) Circular Dichroism of G-Quadruplex: a Laboratory Experiment for the Study of Topology and Ligand Binding. J. Chem. Educ. 94, 1547–1551.
[38] Do, N.Q., Chung, W.J., Hong, T., Truong, A., Heddi, B., Phan, A.T. (2017). G-quadruplex structure of an anti-proliferative DNA sequence. Nucleic Acids Res. 1–7.
[39] Le, Vu H., Narayana Nagesh, and Edwin A. Lewis. (2013) "Bcl-2 promoter sequence G-quadruplex interactions with three planar and non-planar cationic porphyrins: TMPyP4, TMPyP3, and TMPyP2." PloS one. 8.8, e72462.
[40] M.M. Dailey, M.C. Miller, P.J. Bates, A.N. Lane, J.O. Trent. Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence, Nucleic Acids Res. 2010; 38: 4877-4888.
[41] Dai, J.; Carver, M.; Yang, D. (2008) Polymorphism of human telomeric quadruplex structures. Biochimie. 90, 1172.
[42] Pasternack, Robert F., Esther J. Gibbs, and Joseph J. Villafranca. (1983) "Interactions of porphyrins with nucleic acids." Biochemistry. 22.23, 5409-5417.
[43] Wei, Chunying, et al. (2009) "Evidence for the binding mode of porphyrins to G-quadruplex DNA." Physical Chemistry Chemical Physics. 11.20, 4025-4032.
[44] Arora, Amit, and Souvik Maiti. (2008) "Effect of loop orientation on quadruplex− TMPyP4 interaction." The Journal of Physical Chemistry B. 112.27, 8151-8159.
[45] Pasternack, Robert F., and Esther J. Gibbs. (1989) "Interaction of porphyrins and metalloporphyrins with nucleic acids." 59-73.
[46] Kalayanasundaram, K. (1984). Photochemistry of water-soluble porphyrins: Comparative study of isomeric tetrapyridyl-and tetrakis (N-methylpyridiniumy1) porphyrins. Inorganic Chemistry, 23, 2453-2459.
[47] Sazanovich, I. V., & Chirvonyi, V. S. (2005). Deactivation of the S1 state of a water-soluble porphyrin cation in a complex with DNA studied by the method of picosecond absorption spectroscopy. Quantum Electronics, 35(8), 756.
[48] Zhang, HuiJuan, et al. (2008) "Interactions between meso-tetrakis (4-(N-methylpyridiumyl)) porphyrin TMPyP4 and DNA G-quadruplex of telomeric repeated sequence TTAGGG." Science in China Series B: Chemistry. 51.5, 452-456.
[49] Makarska-Bialokoz, Magdalena. (2012) "Spectroscopic study of porphyrin-caffeine interactions." Journal of fluorescence. 22.6, 1521-1530.
[50] Sazanovich, Igor'V., and Vladimir Sergeevich Chirvonyi. (2005) "Deactivation of the S1 state of a water-soluble porphyrin cation in a complex with DNA studied by the method of picosecond absorption spectroscopy." Quantum Electronics. 35.8, 756.
[51] Airoldi, Marta, et al. (2014) "Interaction of doxorubicin with polynucleotides. A spectroscopic study." Biochemistry. 53.13, 2197-2207.
[52] Ranjan, M., Diffley, P., Stephen, G., Price, D., Walton, T. J., & Newton, R. P. (2002). Comparative study of human steroid 5α-reductase isoforms in prostate and female breast skin tissues: sensitivity to inhibition by finasteride and epristeride. Life sciences, 71(2), 115-126.
[53] Wang, Y. Q., Zhang, H. M., & Zhou, Q. H. (2009). Studies on the interaction of caffeine with bovine hemoglobin. European journal of medicinal chemistry, 44(5), 2100-2105.
[54] Lakowicz J.R. (2006) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. 331-351.
[55] Ren, J.; Chaires, J. B. (1999) Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry. 38, 16067.
[56] Ross, Philip D., and S. Subramanian. (1981) "Thermodynamics of protein association reactions: forces contributing to stability." Biochemistry 20.11, 3096-3102.
[57] Hassani, L., et al. (2018) "Thermodynamic Investigation of Copper Porphyrazines and Phthalocyanine Interaction with Human Telomeric G-Quadruplex DNA." Modares Journal of Biotechnology. 9.3, 395-402.
[58] Dezhampanah, Hamid, Abdol-Khalegh Bordbar, and Shahram Tangestaninejad. (2009) "Thermodynamic investigation of manganese (III) 5-(1-(4-carboxybutyl) pyridinium-4-yl) 10, 15, 20-tris-(1-methylpyridinium-4-yl) porphyrin with calf thymus DNA." Journal of Porphyrins and Phthalocyanines 13.08n09, 964-972.
[59] Dezhampanah, Hamid, and Soghra Fyzolahjani. (2013) "Study on interaction of cationic porphyrazine with synthetic polynucleotides." Analytical Cellular Pathology 36.5, 6 125-132.
[60] Olsen, C. M. (2008) Thermodynamic characterization of the folding and interaction of G-quadruplex. Ph.D. Dissertation, University of Nebraska Medical Center.
[61] Z. Bagheri, B. Ranjbar, H. Latifi, M.I. Zibaii, T.T. Moghadam, A. Azizi. (2015) Spectral properties and thermal stability of AS1411 G-quadruplex. International journal of biological
Macromolecules. 72, 806-811.
[62] Fan, Xinmeng, et al. (2016) "Bioactivity of 2′-deoxyinosine-incorporated aptamer AS1411." Scientific reports. 6.1, 1-12.