application of nanoparticles in the processing of essencial oils of range and forest medicinal plants

Document Type : Systematic Review

Authors

1 assisstant prof,department of medicinal plants, Amol university of special modern technology

2 student

Abstract
Background: In recent years, the use of medicinal plants has increased significantly. Essential oils are one of the most important secondary metabolites in plants with promising potentials to promote health. Paying attention to the quality and effectiveness of medicinal plant products is important. Use of free essential oils due to volatility, low stability, poor solubility in water and low bioavailability, limit both their use and effectiveness. The most important tool to increase the quality of essential oil is the use of nanoparticles as carriers. This study aimed to investigate the nanoencapsulation of essential oils of medicinal plants and its effect on increasing the stability of essential oils and improving the quality of drug delivery systems. Method: In the present study, the data of scientific research articles have been used to investigate the use of nanoparticles in increasing the effectiveness of the essential oils. Findings: Drug-carrier nanoparticles include various materials such as nano polymers, dendrimers, etc. that can have different morphology and sizes depending on their synthesis method. Technology of nanoencapsulation of essential oils is used to increase stability, purposefulness and control the release time of essential oil in the human. One of the advantages of targeted drug delivery is the accurate and intelligent accumulation of essential oil as a drug at the target site, thus increasing the stability and pharmacological effects of the essential oil on the organs in the human. Conclusion: Nanocapsules containing essential oils of medicinal plants have significantly increased the effectiveness of essential oils in medical applications.

Keywords

Subjects


1. Unuofin, J.O. and S.L. Lebelo, Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxidative medicine and cellular longevity, 2020. 2020.
2. Nankaya, J., et al., Medicinal plants of the Maasai of Kenya: a review. Plants, 2020. 9(1): p. 44.
3. مهدی, ر.م., شناخت ترکیبات و بیوتکنولوژی گیاهان دارویی. 1393, اصفهان: جهاد دانشگاهی واحد صنعتی اصفهان.
4. Brud, W., Industrial uses of essential oils, in Handbook of Essential Oils. 2020, CRC Press. p. 1029-1040.
5. Bnouham, M., Medicinal plants with potential galactagogue activity used in the moroccan pharmacopoeia. Journal of Complementary and Integrative Medicine, 2010. 7(1).
6. Wu, S.-Q., et al., Evaluation of antioxidant active ingredients of spikenard essential oil by ultra-fast gas chromatography electronic nose and radical scavenging mechanism. Industrial Crops and Products, 2020. 151: p. 112489.
7. Ahmad, M.I., et al., Investigation of Performance of Vapor Compression Refrigeration System with Forced Air-Cooling Condenser With R600a and Hydrocarbon Mixture (R290+ R600a) as Refrigerant, in Advances in Industrial Automation and Smart Manufacturing. 2021, Springer. p. 1035-1041.
8. Donelian, A., et al., Comparison of extraction of patchouli (Pogostemon cablin) essential oil with supercritical CO2 and by steam distillation. The Journal of Supercritical Fluids, 2009. 48(1): p. 15-20.
9. Machado, M., et al., Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure. Experimental parasitology, 2011. 127(4): p. 732-739.
10. Zuzarte, M. and L. Salgueiro, Essential oils chemistry, in Bioactive essential oils and cancer. 2015, Springer. p. 19-61.
11. El Hafidi, S., et al., Essential oil composition of Cladanthus eriolepis (Coss. ex Maire) Oberpr. & Vogt, an endemic species to Morocco. Journal of Essential Oil Research, 2021: p. 1-7.
12. Eisenreich, W., et al., Monoterpenoid essential oils are not of mevalonoid origin. Tetrahedron Letters, 1997. 38(22): p. 3889-3892.
13. Mohammadi, G., et al., Ginger (Zingiber officinale) extract affects growth performance, body composition, haematology, serum and mucosal immune parameters in common carp (Cyprinus carpio). Fish & shellfish immunology, 2020. 99: p. 267-273.
14. Martini, M.C., et al., Artemisia annua and Artemisia afra extracts exhibit strong bactericidal activity against Mycobacterium tuberculosis. Journal of Ethnopharmacology, 2020. 262: p. 113191.
15. Ahmadi, K., et al., The potential impact of future climate on the distribution of European yew (Taxus baccata L.) in the Hyrcanian forest region (Iran). International Journal of Biometeorology, 2020. 64: p. 1451-1462.
16. روستائیان, ع. and م. طاهرخانی, ترپن و ترپنوئیدها. 1396, دانشگاه ازاد اسلامی: واحد علوم و تحقیقات.
17. Yoo, Y.-M., et al., Data on cytotoxicity of plant essential oils in A549 and Detroit 551 cells. Data in brief, 2020. 32: p. 106186.
18. Sharmeen, J.B., et al., Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules, 2021. 26(3): p. 666.
19. Anand, P., et al., Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer letters, 2008. 267(1): p. 133-164.
20. Dolatabadi, J.E.N., H. Valizadeh, and H. Hamishehkar, Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Advanced pharmaceutical bulletin, 2015. 5(2): p. 151.
21. Usman, M., et al., Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 2020. 721: p. 137778.
22. Valipour, S., G.R. Mobini, and J. Akhtari, The use of nanoparticles in the formulation of essential oils. Journal of Shahrekord Uuniversity of Medical Sciences, 2017. 18.
23. Akhtari, J., et al., Targeting, bio distributive and tumor growth inhibiting characterization of anti-HER2 affibody coupling to liposomal doxorubicin using BALB/c mice bearing TUBO tumors. International journal of pharmaceutics, 2016. 505(1-2): p. 89-95.
24. Golian Tehrani, S., et al., The comparison of fennel and mefenamic acid effects on post-partum after pain. Journal of Babol University of Medical Sciences, 2015. 17(8): p. 7-13.
25. Van Vuuren, S., S. Suliman, and A. Viljoen, The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Letters in applied microbiology, 2009. 48(4): p. 440-446.
26. Singh, R., M.A. Shushni, and A. Belkheir, Antibacterial and antioxidant activities of Mentha piperita L. Arabian Journal of Chemistry, 2015. 8(3): p. 322-328.
27. Aali, E., et al., Essential oils as natural medicinal substances. Tehran University Medical Journal TUMS Publications, 2017. 75(7): p. 480-489.
28. Maswal, M. and A.A. Dar, Formulation challenges in encapsulation and delivery of citral for improved food quality. Food Hydrocolloids, 2014. 37: p. 182-195.
29. Balk, E., et al., Effects of Omega‐3 Fatty Acids on Cardiovascular Risk Factors and Intermediate Markers of Cardiovascular Disease: Summary. AHRQ Evidence Report Summaries, 2004.
30. Heinzelmann, K., et al., Protection of fish oil from oxidation by microencapsulation using freeze‐drying techniques. European Journal of Lipid Science and Technology, 2000. 102(2): p. 114-121.
31. Zhang, M., et al., Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 2016. 101: p. 321-340.
32. Li, Z., et al., Fabrication of nanoparticles using partially purified pomegranate ellagitannins and gelatin and their apoptotic effects. Molecular nutrition & food research, 2011. 55(7): p. 1096-1103.
33. زاده, ح. and س. محمدجواد, مروری بر مهم‌ترین مکانیسم‌ها و سیستم‌های دارورسانی هدفمند. فصلنامه بیولوژی کاربردی, 2016. 6(21): p. 17-28.
34. Seyedabadi, M.M., et al., Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Bioscience, 2021. 40: p. 100857.
35. پور, م., et al., نانولیپوزوم ها به عنوان حامل های دارورسان جدید. مجله علمی پزشکی جندی شاپور, 2013. 12(5): p. 467-483.
36. Mozafari, M.R. and K. Khosravi-Darani, An overview of liposome-derived nanocarrier technologies. Nanomaterials and nanosystems for biomedical applications, 2007: p. 113-123.
37. محمدپناه, et al., سنتز نانوحامل های لیپوزومی حاوی اسانس اسطوخودوس و مشخصه یابی آنها با هدف اثرگذاری بر رده های سلولی سرطان سینه. یافته, 2020. 22(1): p. 84-95.
38. زاده, م., et al., استراتژی نوین در بهبود شاخصه‌های درمانی داروهای گیاهی: ساخت و مشخصه یابی نانو لیپوزومهای حاوی اسانس نعناع فلفلی (Mentha piperita). ماهنامه علمی پ‍ژوهشی دانشگاه علوم پزشکی شهید صدوقی یزد, 2018. 25(11): p. 853-864.
39. سالاری and ش. الدینی, ساخت سامانه نانولیپوزومی حاوی اسانس گیاه دارویی مشگک با دو روش سونیکاسیون و فیلتراسیون. فصلنامه علمی پژوهشی گیاهان دارویی, 2020. 19(74): p. 227-236.
40. نقده, ق., et al., ارزیابی خواص ضدمیکروبی وآنتی‌اکسیدانتی نانولیپوزوم حاوی اسانس مریم گلی (Salvia multicaulis). علوم و صنایع غذایی ایران, 2017. 14(62): p. 282-271.
41. Bahreloloum Tabatabai, M., et al., Design and Production of A Wound Cover Containing Essence of Ajwain (Trachyspermum) by Nanoliposome Technique, and Assessment of Its Physical, Chemical, Antibacterial and Cytotoxicity Properties. Journal of Arak University of Medical Sciences, 2019. 22(1): p. 1-14.
42. زاده, ف., قریب, and گودرزی, بررسی اثرات ضد باکتری نانولیپوزوم‌های حاوی سیلیمارین بر استافیلوکوکوس اورئوس مقاوم به متی سیلین. Journal of Advances in Medical and Biomedical Research, 2014. 22(93): p. 86-85.
43. Valenti, D., et al., Liposome-incorporated Santolina insularis essential oil: preparation, characterization and in vitro antiviral activity. Journal of liposome research, 2001. 11(1): p. 73-90.
44. Sinico, C., et al., Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. European Journal of Pharmaceutics and Biopharmaceutics, 2005. 59(1): p. 161-168.
45. گیر, ن., et al., تهیه نانو لیپوزوم های حاوی اسانس روغنی پرتقال با استفاده از روش حرارتی. نوآوری در علوم و فناوری غذایی, 2018. 10(2): p. 115-122.
46. Nieto, G., K. Huvaere, and L.H. Skibsted, Antioxidant activity of rosemary and thyme by-products and synergism with added antioxidant in a liposome system. European Food Research and Technology, 2011. 233(1): p. 11-18.
47. Risaliti, L., et al., Artemisia annua essential oil extraction, characterization, and incorporation in nanoliposomes, smart drug delivery systems against Candida species. Journal of Drug Delivery Science and Technology, 2020. 59: p. 101849.
48. Liu, Y., et al., Stable polymer nanoparticles with exceptionally high drug loading by sequential nanoprecipitation. Angewandte Chemie, 2020. 132(12): p. 4750-4758.
49. Banik, B., P. Fattahi, and J. Brown, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol, 2016. 8(2): p. 271-299.
50. Klaypradit, W. and Y.-W. Huang, Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT-Food Science and Technology, 2008. 41(6): p. 1133-1139.
51. McClements, D.J., Nanoparticle-and microparticle-based delivery systems: Encapsulation, protection and release of active compounds. 2014: CRC press.
52. مهدوی, م., بررسی اثر ضدمیکروبی اسانس آویشن شیرازی کپسوله شده در بیوپلیمر کیتوسان در مقایسه با اسانس آزاد. دانش زیستی ایران, 2019. 14(1): p. 67-76.
53. نجفی, غ., et al., تهیه روغن اسانسی نعناء و کپسوله کردن آن با استفاده از پلیمرهای سدیم آلژینات، نشاسته و مالتودکسترین. فصلنامه بیولوژی کاربردی, 2019. 8(32): p. 79-89.
54. کرمانشاهی, ن., et al., مطالعه فعالیت ضد باکتریایی اسانس نعناع (Mentha spicata) کپسوله شده در نانوژل های کیتوسان-اسید کافئیک بر علیه باکتری های گرم مثبت و گرم منفی. دانش زیستی ایران, 2017. 11(4): p. 33-43.
55. de Oliveira, E.F., H.C. Paula, and R.C. de Paula, Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids and Surfaces B: Biointerfaces, 2014. 113: p. 146-151.
56. مجیدی, ا., نانو انکپسولاسیون اسانس گیاهان. 1398, تهران فانوس دنیا.
57. Villegas-Rascon, R., et al., Chitosan/essential oils biocomposites for suppressing the growth of Aspergillus parasiticus. International Food Research Journal, 2020. 27(2): p. 316-326.
58. Yadav, A., et al., Encapsulation of Bunium persicum essential oil using chitosan nanopolymer: Preparation, characterization, antifungal assessment, and thermal stability. International journal of biological macromolecules, 2020. 142: p. 172-180.
59. Erfani-Moghadam, V., et al., Design and Synthesis of a Novel Dendrosome and a PEGylated PAMAM Dendrimer Nanocarrier to Improve the Anticancer effect of Turmeric (Curcuma longa) Curcumin. Modares Journal of Medical Sciences: Pathobiology, 2014. 17(1).
60. D'Emanuele, A. and D. Attwood, Dendrimer–drug interactions. Advanced drug delivery reviews, 2005. 57(15): p. 2147-2162.
61. Tahmasebi Mirgani, M., et al., Dendrosomal curcumin induced apoptosis by suppression of pluripotency genes in 5637 bladder cancer cells. Pathobiology Research, 2013. 16(1): p. 23-39.
62. فریماه, م., et al., بررسی رهایش عصاره هیدروالکلی کندر از نانوذره لیپیدی جامد برپایه توکوفرول سوکسینات برای استفاده در درمان آلزایمر. شانزدهمین کنگره ملی مهندسی شیمی ایران, 1397. 16(162): p. 5.
63. ثانی, ا., et al., بررسی اثر نانوذره‌های دندروزومی بر دسترسی‌زیستی و جذب سلولی بتا-بوسولیک ‌اسید با استفاده از تست MTT بر روی سلول‌های B65. مجله تازه های بیوتکنولوژی سلولی و مولکولی, 2017. 7(25): p. 53-60.
64. Thanh, V.M., et al., Origanum majorana L. Essential Oil-Associated Polymeric Nano Dendrimer for Antifungal Activity against Phytophthora infestans. Materials, 2019. 12(9): p. 1446.
65. Guerra-Rosas, M.I., et al., Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids, 2016. 52: p. 438-446.
66. اوچتپه, ح.ز., et al., تولید و بررسی ویژگی‌های فیزیکی‌شیمیایی و راندمان درون پوشانی نانو امولسیون‌ حاوی اسانس سیر. پژوهش های صنایع غذایی, 2017. 27(4): p. 159-170.
67. Bedoya-Serna, C.M., et al., Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian journal of microbiology, 2018. 49(4): p. 929-935.
68. Borges, R.S., et al., Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology, 2018. 26(4): p. 1057-1080.
69. حمیدرضا, ک., ا. جعفر, and س. مجید, کاربرد و خصوصیات نانوذرات لیپیدی جامد و حامل های لیپیدی نانوساختار به عنوان سیستم های حامل دارو.
70. محبوبه, ن., et al., تهیه و بررسی خصوصیات نانو ذرات لیپیدی جامد حاوی اسانس آویشن شیرازی با روش هموژناسیون با فشار کششی بالا و امواج فراصوت.
71. Lai, F., et al., Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. Aaps Pharmscitech, 2006. 7(1): p. E10-E18.
72. Santonocito, D., et al., Curcumin containing PEGylated solid lipid nanoparticles for systemic administration: A preliminary study. Molecules, 2020. 25(13): p. 2991.