References:
1. Sabri, M.Z., Hamid, A.A.A., Hitam, S.M.S. and Rahim, M.Z.A., 2019. In-silico selection of aptamer: A review on the revolutionary approach to understand the aptamer design and interaction through computational chemistry. Materials Today: Proceedings, 19, pp.1572-1581.
2. Cai, S., Yan, J., Xiong, H., Liu, Y., Peng, D. and Liu, Z., 2018. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst, 143(22), pp.5317-5338.
3. Lakhin, A.V., Tarantul, V.Z. and Gening, L., 2013. Aptamers: problems, solutions and prospects. Acta Naturae (англоязычная версия), 5(4 (19)).
4. Li, B.Q., Zhang, Y.C., Huang, G.H., Cui, W.R., Zhang, N. and Cai, Y.D., 2014. Prediction of aptamer-target interacting pairs with pseudo-amino acid composition. PLoS One, 9(1), p.e86729.
5. González, V. M., Martín, M. E., Fernández, G., & García-Sacristán, A. (2016). Use of aptamers as diagnostics tools and antiviral agents for human viruses. Pharmaceuticals, 9(4), 78.
6. Iliuk, A.B., Hu, L. and Tao, W.A., 2011. Aptamer in bioanalytical applications. Analytical chemistry, 83(12), pp.4440-4452.
7. Caroli, J., Taccioli, C., De La Fuente, A., Serafini, P. and Bicciato, S., 2016. APTANI: a computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data. Bioinformatics, 32(2), pp.161-164.
8. Ueki, R., Atsuta, S., Ueki, A., Hoshiyama, J., Li, J., Hayashi, Y. and Sando, S., 2019. DNA aptamer assemblies as fibroblast growth factor mimics and their application in stem cell culture. Chemical Communications, 55(18), pp.2672-2675.
9. Navien, T.N., Thevendran, R., Hamdani, H.Y., Tang, T.H. and Citartan, M., 2021. In silico molecular docking in DNA aptamer development. Biochimie. 180, pp.54-67.
10. Kang, K.N. and Lee, Y.S., 2012. RNA aptamers: a review of recent trends and applications. Future Trends in Biotechnology, pp.153-169.
11. Hamada, M., 2018. In silico approaches to RNA aptamer design. Biochimie, 145, pp.8-14.
12. Ellington, A.D., and Szostak, J.W., 1990. In vitro selection of RNA molecules that bind specific ligands. Nature, 346, pp.818–822
13. Colas, P., Cohen, B., Jessen, T., Grishina, I., McCoy, J. and Brent, R., 1996. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature, 380(6574), pp.548-550.
14. Colas, P., 2000. Combinatorial protein reagents to manipulate protein function. Current opinion in chemical biology, 4(1), pp.54-59.
15. Sachdeva, S., Joo, H., Tsai, J., Jasti, B. and Li, X., 2019. A rational approach for creating peptides mimicking antibody binding. Scientific reports, 9(1), pp.1-11.
16. Baines, I.C. and Colas, P., 2006. Peptide aptamers as guides for small-molecule drug discovery. Drug discovery today, 11(7-8), pp.334-341.
17. Tuerk, C. and Gold, L., 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. science, 249(4968), pp.505-510.
18. Chen, C., Zhou, S., Cai, Y. and Tang, F., 2017. Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. NPJ precision oncology, 1(1), pp.1-7.
19. Ulrich, H., 2006. RNA aptamers: from basic science towards therapy. RNA towards Medicine, pp.305-326.
20. Kulbachinskiy, A.V., 2007. Methods for selection of aptamers to protein targets. Biochemistry (Moscow), 72(13), pp.1505-1518.
21. Marimuthu, C., Tang, T.H., Tominaga, J., Tan, S.C. and Gopinath, S.C., 2012. Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst, 137(6), pp.1307-1315.
22. Mascini, M., Palchetti, I. and Tombelli, S., 2012. Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angewandte Chemie International Edition, 51(6), pp.1316-1332.
23. Wang, W., Hara, S., Liu, M., Aigaki, T., Shimizu, S. and Ito, Y., 2011. Polypeptide aptamer selection using a stabilized ribosome display. Journal of bioscience and bioengineering, 112(5), pp.515-517.
24. Ruscito, A. and DeRosa, M.C., 2016. Small-molecule binding aptamers: Selection strategies, characterization, and applications. Frontiers in chemistry, 4, p.14.
25. Khoshbin, Z., Verdian, A., Housaindokht, M.R., Izadyar, M. and Rouhbakhsh, Z., 2018. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosensors and Bioelectronics, 122, pp.263-283.
26. Hao, L., Duan, N., Wu, S., Xu, B. and Wang, Z., 2015. Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles. Analytical and bioanalytical chemistry, 407(26), pp.7907-7915.
27. Zhao, Y.W., Wang, H.X., Jia, G.C. and Li, Z., 2018. Application of aptamer-based biosensor for rapid detection of pathogenic Escherichia coli. Sensors, 18(8), p.2518.
28. Zhang, W., Liu, Q.X., Guo, Z.H. and Lin, J.S., 2018. Practical application of aptamer-based biosensors in detection of low molecular weight pollutants in water sources. Molecules, 23(2), p.344.
29. Dhiman, A., Anand, A., Malhotra, A., Khan, E., Santra, V., Kumar, A. and Sharma, T.K., 2018. Rational truncation of aptamer for cross-species application to detect krait envenomation. Scientific reports, 8(1), pp.1-8..
30. Lu, A.H., Salabas, E.E. and Schüth, F., 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8), pp.1222-1244.
31. Kim, S.H., Lee, E.H., Lee, S.C., Kim, A.R., Park, H.H., Son, J.W., Koh, S.H. and Yoon, M.Y., 2020. Development of peptide aptamers as alternatives for antibody in the detection of amyloid-beta 42 aggregates. Analytical Biochemistry, 609, p.113921.
32. Wu, W.Y., Dai, Y.C., Li, N.G., Dong, Z.X., Gu, T., Shi, Z.H., Xue, X., Tang, Y.P. and Duan, J.A., 2017. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. Journal of enzyme inhibition and medicinal chemistry, 32(1), pp.572-587.
33. Hamley, I.W., 2012. The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chemical reviews, 112(10), pp.5147-5192.
34. Palop, J.J. and Mucke, L., 2010. Amyloid-β–induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nature neuroscience, 13(7), p.812.
35. Buglak, A.A., Samokhvalov, A.V., Zherdev, A.V. and Dzantiev, B.B., 2020. Methods and Applications of In Silico Aptamer Design and Modeling. International Journal of Molecular Sciences, 21(22), p.8420.
36. Li, X., Chung, L.W. and Li, G., 2016. Multiscale simulations on spectral tuning and the photoisomerization mechanism in fluorescent RNA spinach. Journal of chemical theory and computation, 12(11), pp.5453-5464
37. Hoinka, J. and Przytycka, T., 2016. AptaPLEX–A dedicated, multithreaded demultiplexer for HT-SELEX data. Methods, 106, pp.82-85.
38. Antipova, O.M., Zavyalova, E.G., Golovin, A.V., Pavlova, G.V., Kopylov, A.M. and Reshetnikov, R.V., 2018. Advances in the application of modified nucleotides in SELEX technology. Biochemistry (Moscow), 83(10), pp.1161-1172. 135 khudeshe
39. Carothers, J.M., Oestreich, S.C. and Szostak, J.W., 2006. Aptamers selected for higher-affinity binding are not more specific for the target ligand. Journal of the American Chemical Society, 128(24), pp.7929-7937.
40. Hu, W.P., Lin, H.T., Tsai, J.J. and Chen, W.Y., 2017. Investigating interactions between proteins and nucleic acids by computational approaches. Computational Methods with Applications in Bioinformatics Analysis; World Scientific: Singapore, p.98.
41. Kinghorn, A.B., Fraser, L.A., Liang, S., Shiu, S.C.C. and Tanner, J.A., 2017. Aptamer bioinformatics. International journal of molecular sciences, 18(12), p.2516.
42. Kato, T., Takemura, T., Yano, K., Ikebukuro, K. and Karube, I., 2000. In vitro selection of DNA aptamers which bind to cholic acid. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1493(1-2), pp.12-18.
43. Bing, T., Yang, X., Mei, H., Cao, Z. and Shangguan, D., 2010. Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. Bioorganic & medicinal chemistry, 18(5), pp.1798-1805.
44. Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research, 31(13), pp.3406-3415.
45. Chen, J.L., Bellaousov, S., Tubbs, J.D., Kennedy, S.D., Lopez, M.J., Mathews, D.H., and Turner, D.H., 2015. NMR-assisted prediction of secondary structure for RNA: Incorporation of direction-dependent 666 chemical shift constraints. Biochemistry, 667, pp.1–44.
46. Mortimer, S.A., Kidwell, M.A. and Doudna, J.A., 2014. Insights into RNA structure and function from genome-wide studies. Nature Reviews Genetics, 15(7), pp.469-479.
47. Laing, C. and Schlick, T., 2011. Computational approaches to RNA structure prediction, analysis, and design. Current opinion in structural biology, 21(3), pp.306-318.
48. Nasalean, L., Stombaugh, J., Zirbel, C.L. and Leontis, N.B., 2009. RNA 3D structural motifs: definition, identification, annotation, and database searching. In Non-protein coding RNAs (pp. 1-26). Springer, Berlin, Heidelberg.
49. Heiat, M., Najafi, A., Ranjbar, R., Latifi, A.M. and Rasaee, M.J., 2016. Computational approach to analyze isolated ssDNA aptamers against angiotensin II. Journal of biotechnology, 230, pp.34-39.
50. Yarizadeh, K., Behbahani, M., Mohabatkar, H. and Noorbakhsh, A., 2019. Computational analysis and optimization of carcinoembryonic antigen aptamers and experimental evaluation. Journal of biotechnology, 306, pp.1-8.
51. Karplus, M. and McCammon, J.A., 2002. Molecular dynamics simulations of biomolecules. Nature structural biology, 9(9), pp.646-652.
52. Hollingsworth, S.A. and Dror, R.O., 2018. Molecular dynamics simulation for all. Neuron, 99(6), pp.1129-1143.
53. Robustelli, P., Piana, S. and Shaw, D.E., 2018. Developing a molecular dynamics force field for both folded and disordered protein states. Proceedings of the National Academy of Sciences, 115(21), pp.E4758-E4766.
54. Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J.Y., Wang, L., Lupyan, D., Dahlgren, M.K., Knight, J.L. and Kaus, J.W., 2016. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. Journal of chemical theory and computation, 12(1), pp.281-296
55. Ladner, R.C., Sato, A.K., Gorzelany, J. and de Souza, M., 2004. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug discovery today, 9(12), pp.525-529.
56. Sachdeva, S., Joo, H., Tsai, J., Jasti, B. and Li, X., 2019. A rational approach for creating peptides mimicking antibody binding. Scientific reports, 9(1), pp.1-11.
57. Hess, B., Kutzner, C., Van Der Spoel, D. and Lindahl, E., 2008. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of chemical theory and computation, 4(3), pp.435-447.
58. Si, J., Cui, J., Cheng, J. and Wu, R., 2015. Computational prediction of RNA-binding proteins and binding sites. International journal of molecular sciences, 16(11), pp.26303-26317.
59. Deng, B., Lin, Y., Wang, C., Li, F., Wang, Z., Zhang, H., Li, X.F. and Le, X.C., 2014. Aptamer binding assays for proteins: the thrombin example—a review. Analytica chimica acta, 837, pp.1-15.
60. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C. and Vakser, I.A., 1992. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proceedings of the National Academy of Sciences, 89(6), pp.2195-2199.
61. Ritchie, D.W., 2003. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins: Structure, Function, and Bioinformatics, 52(1), pp.98-106.
62. Wang, Q.L., Cui, H.F., Du, J.F., Lv, Q.Y. and Song, X., 2019. In silico post-SELEX screening and experimental characterizations for acquisition of high affinity DNA aptamers against carcinoembryonic antigen. RSC advances, 9(11), pp.6328-6334.
63. van Dijk, M. and Bonvin, A.M., 2010. Pushing the limits of what is achievable in protein–DNA docking: benchmarking HADDOCK’s performance. Nucleic acids research, 38(17), pp.5634-5647
64. Nussinov, S.D.D.I.Y., 2005. R Wolfson H. Nucl Acids Res, 33, pp.W363-W367.
65. Tuszynska, I., Magnus, M., Jonak, K., Dawson, W. and Bujnicki, J.M., 2015. NPDock: a web server for protein–nucleic acid docking. Nucleic acids research, 43(W1), pp.W425-W430.
66. El-Hachem, N., Haibe-Kains, B., Khalil, A., Kobeissy, F.H. and Nemer, G., 2017. AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. In Neuroproteomics (pp. 391-403). Humana Press, New York, NY.
67. Trott, O. and Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), pp.455-461.
68. Tanchuk, V.Y., Tanin, V.O., Vovk, A.I. and Poda, G., 2016. A new, improved hybrid scoring function for molecular docking and scoring based on AutoDock and AutoDock Vina. Chemical biology & drug design, 87(4), pp.618-625.
69. Hashemi, M., Shamshiri, A., Saeedi, M., Tayebi, L. and Yazdian-Robati, R., 2020. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Archives of Biochemistry and Biophysics, p.108485.
70. Zhang, Y., Lai, B.S. and Juhas, M., 2019. Recent advances in aptamer discovery and applications. Molecules, 24(5), p.941.
71. Yan, J., Xiong, H., Cai, S., Wen, N., He, Q., Liu, Y., Peng, D. and Liu, Z., 2019. Advances in aptamer screening technologies. Talanta, 200, pp.124-144.