1- Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, Li S. Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels. 2016; 9(1):134.
2- Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I. Poly-γ-glutamic acid: production, properties and applications. Microbiology. 2015; 161(1):1-17.
3- Bajaj I, Singhal R. Poly (glutamic acid)–an emerging biopolymer of commercial interest. Bioresour Technol. 2011; 102(10):5551-61.
4- Akagi T, Matsusaki M, Akashi M. Pharmaceutical and medical applications of poly-gamma-glutamic acid. In: Amino-acid homopolymers occurring in nature. Berlin: Springer; 2010. pp. 119-53.
5- Hsueh YH, Huang KY, Kunene SC, Lee TY. Poly-γ-glutamic acid synthesis, gene regulation, phylogenetic relationships, and role in fermentation. Int J Mol Sci. 2017; 18(12):2644.
6- Ashiuchi M. Microbial production and chemical transformation of poly-γ-glutamate. Microb Biotechnol. 2013; 6(6):664-74.
7- Manocha B, Margaritis A. Production and characterization of γ-polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol. 2008; 28(2):83-99.
8- Wang Q, Wei X, Chen, S. Production and application of poly-γ-glutamic acid. In: Current Developments in Biotechnology and Bioengineering. Elsevier; 2017. pp. 693-717.
9- Sirisansaneeyakul S, Cao M, Kongklom N, Chuensangjun C, Shi Z, Chisti Y. Microbial production of poly-γ-glutamic acid. World J Microbiol Biotechnol. 2017; 33(9):173.
10- Xu Z, Zhang H, Chen H, Shi F, Huang J, Wang S, Song C. Microbial Production of Poly‐γ‐Glutamic Acid. In: Yang ST, El-Enshasy HA, Thongchul N, editor. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. John Wiley & Sons; 2013. pp. 427-40.
11- Birrer GA, Cromwick AM, Gross RA. γ-Poly (glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int J Biol Macromol. 1994; 16(5):265-75.
12- Yoon SH, Do JH, Lee SY, Chang HN. Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnol Lett. 2000; 22(7):585-8.
13- Cromwick AM, Gross RA. Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and γ-poly (glutamic acid) formation. Int J Biol Macromol. 1995; 17(5):259-67.
14- Cromwick AM, Birrer GA, Gross RA. Effects of pH and aeration on gamma-poly (glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng. 1996; 50(2):222–7.
15- Feng J, Shi Q, Zhou G, Wang L, Chen A, Xie X, Huang X, Hu W. Improved production of poly-γ-glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a. Process Biochem. 2017; 56:30-6.
16- Troy FA. Chemistry and Biosynthesis of the Poly (γ-d-glutamyl) Capsule in Bacillus licheniformis I. PROPERTIES OF THE MEMBRANE-MEDIATED BIOSYNTHETIC REACTION. J Biol Chem. 1973; 248(1):305-15.
17- Troy FA. Chemistry and biosynthesis of the poly (γ-D-glutamyl) capsule in Bacillus licheniformis II. Characterization and structural properties of the enzymatically synthesized polymer. J Biol Chem. 1973; 248(1):316-24.
18- Ko YH, Gross RA. Effects of glucose and glycerol on γ‐poly (glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol Bioeng. 1998; 57(4):430-7.
19- Mitsunaga H, Meissner L, Büchs J, Fukusaki E. Branched chain amino acids maintain the molecular weight of poly (γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation. J Biosci Bioeng. 2016; 122(4):400-5.
20- Mitsunaga H, Meissner L, Palmen T, Bamba T, Büchs J, Fukusaki E. Metabolome analysis reveals the effect of carbon catabolite control on the poly (γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. J Biosci Bioeng. 2016; 121(4):413-9.
21- Giannos SA, Shah D, Gross RA, Kaplan DL, Mayer JM. Poly (glutamic acid) produced by bacterial fermentation. In: Dawes EA, editor. Novel Biodegradable Microbial Polymers. Netherlands: Springer; 1990. Nato Science Series E; 186. pp. 457-60.
22- Goto A, Kunioka M. Biosynthesis and hydrolysis of poly (γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci Biotechnol Biochem. 1992; 56(7):1031–5.
23- Do JH, Chang HN, Lee SY. Efficient recovery of γ-poly (glutamic acid) from highly viscous culture broth. Biotechnol Bioeng. 2001; 76(3):219–23.
24- Pereira CL, Antunes JC, Gonçalves RM, Ferreira-da-Silva F, Barbosa MA. Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications. J Mater Sci Mater Med. 2012; 23(7):1583-91.
25- Lin B, Li Z, Zhang H, Wu J, Luo M. Cloning and expression of the γ-polyglutamic acid synthetase gene pgsBCA in Bacillus subtilis WB600. Biomed Res Int. 2016; Article ID: 3073949.
26- Wang F, Liang J, Wang W, Fu D, Xiao W. A new and efficient method for purification of poly-γ-glutamic acid from high-viscosity fermentation broth. Trop J Pharm Res. 2017; 16(6):1267-75.
27- Cromwick AM, Gross RA. Investigation by NMR of metabolic routes to bacterial γ-poly (glutamic acid) using 13C-labeled citrate and glutamate as media carbon sources. Can J Microbiol. 1995; 41(10):902-9.
28- Abdel-Fattah Y, Soliman N, Berekaa M. Application of Box-Behnken Design for Optimization of Poly-γ-Glutamic Acid Production by Bacillus licheniformis SAB-26. Res J Microbiol. 2007; 2(9):664-70.
29- Zhang C, Wu D, Qiu X. Stimulatory effects of amino acids on γ-polyglutamic acid production by Bacillus subtilis. Sci Rep. 2018; 8(1):1-9.
30- Patra JK, Das G, Fraceto LF, Campos EV, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018; 16(1):1-33.