[1] L.T. Saldin, M.C. Cramer, S.S. Velankar, L.J. White, S.F. Badylak, Extracellular matrix hydrogels from decellularized tissues: structure and function, Acta biomaterialia 49 (2017) 1-15.
[2] F. Pati, J. Jang, D.-H. Ha, S.W. Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, D.-W. Cho, Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink, Nature communications 5 (2014) 3935.
[3] X. Peng, X. Wang, C. Cheng, X. Zhou, Z. Gu, L. Li, J. Liu, X. Yu, Bioinspired, Artificial, Small-Diameter Vascular Grafts with Selective and Rapid Endothelialization Based on an Amniotic Membrane-Derived Hydrogel, ACS Biomaterials Science & Engineering 6(3) (2020) 1603-1613.
[4] G. Castellanos, A. Bernabe-Garcia, J.M. Moraleda, F.J. Nicolas, Amniotic membrane application for the healing of chronic wounds and ulcers, Placenta 59 (2017) 146-153.
[5] D. Nasiry, A.R. Khalatbary, M.-A. Abdollahifar, A. Amini, M. Bayat, A. Noori, A. Piryaei, Engraftment of bioengineered three-dimensional scaffold from human amniotic membrane-derived extracellular matrix accelerates ischemic diabetic wound healing, Archives of Dermatological Research (2020) 1-16.
[6] V. Ryzhuk, X.-x. Zeng, X. Wang, V. Melnychuk, L. Lankford, D. Farmer, A. Wang, Human amnion extracellular matrix derived bioactive hydrogel for cell delivery and tissue engineering, Materials science & engineering. C, Materials for biological applications 85 (2018) 191.
[7] T.D. Johnson, S.Y. Lin, K.L. Christman, Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel, Nanotechnology 22(49) (2011) 494015.
[8] R. Holmes, S. Kirk, G. Tronci, X. Yang, D. Wood, Influence of telopeptides on the structural and physical properties of polymeric and monomeric acid-soluble type I collagen, Materials Science and Engineering: C 77 (2017) 823-827.
[9] F. Zhao, J. Cheng, M. Sun, H. Yu, N. Wu, Z. Li, J. Zhang, Q. Li, P. Yang, Q. Liu, Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing, Biofabrication 12(4) (2020) 045011.
[10] R.A. Pouliot, B.M. Young, P.A. Link, H.E. Park, A.R. Kahn, K. Shankar, M.B. Schneck, D.J. Weiss, R.L. Heise, Porcine lung-derived extracellular matrix hydrogel properties are dependent on pepsin digestion time, Tissue Engineering Part C: Methods 26(6) (2020) 332-346.
[11] N. Eslahi, A. Simchi, M. Mehrjoo, M.A. Shokrgozar, S. Bonakdar, Hybrid cross-linked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: tunable thermosensitivity, biodegradability and mechanical durability, RSC advances 6(67) (2016) 62944-62957.
[12] E. Tamjid, B.H. Guenther, Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol, Powder Technology 197(1-2) (2010) 49- 3.
[13] D.O. Freytes, J. Martin, S.S. Velankar, A.S. Lee, S.F. Badylak, Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix, Biomaterials 29(11) (2008) 1630-1637.
[14] Y.K. Lin, D.C. Liu, Effects of pepsin digestion at different temperatures and times on properties of telopeptide-poor collagen from bird feet, Food Chemistry 94(4) (2006) 621-625.
[15] D.L. Christiansen, E.K. Huang, F.H. Silver, Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties, Matrix Biology 19(5) (2000) 409-420.
[16] S. Zhu, Q. Yuan, T. Yin, J. You, Z. Gu, S. Xiong, Y. Hu, Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications, Journal of Materials Chemistry B 6(18) (2018) 2650-2676.
[17] J.M. Townsend, E.C. Beck, S.H. Gehrke, C.J. Berkland, M.S. Detamore, Flow behavior prior to crosslinking: The need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting, Progress in polymer science 91 (2019) 126-140.
[18] B. Toprakhisar, A. Nadernezhad, E. Bakirci, N. Khani, G.A. Skvortsov, B. Koc, Development of bioink from decellularized tendon extracellular matrix for 3D bioprinting, Macromolecular bioscience 18(10) (2018) 1800024.
[19] C. Williams, K. Sullivan, L.D. Black III, Partially digested adult cardiac extracellular matrix promotes cardiomyocyte proliferation in vitro, Advanced healthcare materials 4(10) (2015) 1545-1554.
[20] M.T. Wolf, K.A. Daly, E.P. Brennan-Pierce, S.A. Johnson, C.A. Carruthers, A. D'Amore, S.P. Nagarkar, S.S. Velankar, S.F. Badylak, A hydrogel derived from decellularized dermal extracellular matrix, Biomaterials 33(29) (2012) 7028-7038.
[21] G.E. Davis, K.J. Bayless, M.J. Davis, G.A. Meininger, Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules, The American journal of pathology 156(5) (2000) 1489-1498.
[22] E.P. Brennan, J. Reing, D. Chew, J.M. Myers-Irvin, E. Young, S.F. Badylak, Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix, Tissue engineering 12(10) (2006) 2949-2955.
[23] T.L. Adair-Kirk, R.M. Senior, Fragments of extracellular matrix as mediators of inflammation, The international journal of biochemistry & cell biology 40(6-7) (2008) 1101-1110.
[24] J.D. Mott, Z. Werb, Regulation of matrix biology by matrix metalloproteinases, Current opinion in cell biology 16(5) (2004) 558-564.
[25] S.V. Murphy, A. Skardal, L. Song, K. Sutton, R. Haug, D.L. Mack, J. Jackson, S. Soker, A. Atala, Solubilized amnion membrane hyaluronic acid hydrogel accelerates full‐thickness wound healing, Stem cells translational medicine 6(11) (2017) 2020-2032.
[26] J.M. Mattson, R. Turcotte, Y. Zhang, Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics, Biomechanics and modeling in mechanobiology 16(1) (2017) 213-225.
[27] C. Li, L. Duan, Z. Tian, W. Liu, G. Li, X. Huang, Rheological behavior of acylated pepsin-solubilized collagen solutions: Effects of concentration, Korea-Australia Rheology Journal 27(4) (2015) 287-295.
[28] F.P. Melchels, M.M. Blokzijl, R. Levato, Q.C. Peiffer, M. De Ruijter, W.E. Hennink, T. Vermonden, J. Malda, Hydrogel-based reinforcement of 3D bioprinted constructs, Biofabrication 8(3) (2016) 035004.
[29] J. Jang, T.G. Kim, B.S. Kim, S.-W. Kim, S.-M. Kwon, D.-W. Cho, Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking, Acta biomaterialia 33 (2016) 88-95.
[30] G. Gao, J.H. Lee, J. Jang, D.H. Lee, J.S. Kong, B.S. Kim, Y.J. Choi, W.B. Jang, Y.J. Hong, S.M. Kwon, Tissue engineered bio‐blood‐vessels constructed using a tissue‐specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease, Advanced functional materials 27(33) (2017) 1700798.
[31] S. Sasikumar, S. Chameettachal, B. Cromer, F. Pati, P. Kingshott, Decellularized extracellular matrix hydrogels–cell behavior as function of matrix stiffness, Current Opinion in Biomedical Engineering (2019).
[32] J.M. Singelyn, K.L. Christman, Modulation of material properties of a decellularized myocardial matrix scaffold, Macromolecular bioscience 11(6) (2011) 731-738.
[33] P.A. Link, R.A. Pouliot, N.S. Mikhaiel, B.M. Young, R.L. Heise, Tunable hydrogels from pulmonary extracellular matrix for 3D cell culture, Journal of visualized experiments: JoVE (119) (2017).
[34] J. Visser, P.A. Levett, N.C. te Moller, J. Besems, K.W. Boere, M.H. van Rijen, J.C. de Grauw, W.J. Dhert, P.R. van Weeren, J. Malda, Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue, Tissue engineering part A 21(7-8) (2015) 1195-1206.
[35] J.A. DeQuach, V. Mezzano, A. Miglani, S. Lange, G.M. Keller, F. Sheikh, K.L. Christman, Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture, PloS one 5(9) (2010) e13039.
[36] U. Galili, Avoiding detrimental human immune response against Mammalian extracellular matrix implants, Tissue Engineering Part B: Reviews 21(2) (2015) 231-241.
[37] G.H. Kim, N. Uriel, D. Burkhoff, Reverse remodelling and myocardial recovery in heart failure, Nature Reviews Cardiology 15(2) (2018) 83-96.
[38] J.J. Henry, L. Delrosario, J. Fang, S.Y. Wong, Q. Fang, R. Sievers, S. Kotha, A. Wang, D. Farmer, P. Janaswamy, Development of injectable amniotic membrane matrix for postmyocardial infarction tissue repair, Advanced healthcare materials 9(2) (2020) 1900544.
[39] X. Li, P. Li, C. Wang, T. Shang, H. Han, Y. Tong, Y. Kang, J. Fang, L. Cui, A Thermo-Sensitive and Injectable Hydrogel Derived From Decellularized Amniotic Membrane to Prevent Intrauterine Adhesion by Accelerating Endometrium Regeneration, Available at SSRN 3885862.
[40] D. Yu, Y.-M. Wong, Y. Cheong, E. Xia, T.-C. Li, Asherman syndrome—one century later, Fertility and sterility 89(4) (2008) 759-779.
[41] X. Chen, J. Sun, X. Li, L. Mao, Y. Zhou, L. Cui, W. Bai, Antifibrotic effects of decellularized and lyophilized human amniotic membrane transplant on the formation of intrauterine adhesion, Experimental and clinical transplantation: official journal of the Middle East Society for Organ Transplantation 17(2) (2018) 236-242.
[42] M. Bhattacharjee, J.L.E. Ivirico, H.-M. Kan, R. Bordett, R. Pandey, T. Otsuka, L.S. Nair, C.T. Laurencin, Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1β activated chondrocytes, Scientific reports 10(1) (2020) 1-15.