[1] C. Du and X. Xie, “G protein-coupled receptors as therapeutic targets for multiple sclerosis,” Cell Res., vol. 22, no. 7, pp. 1108–1128, 2012, doi: 10.1038/cr.2012.87.
[2] B. N. Gargari, M. Behmanesh, and M. A. Sahraian, “Effect of vitamin D treatment on interleukin-2 and interleukin-4 genes expression in multiple sclerosis,” Physiol. Pharmacol., vol. 19, no. 1, pp. 14–21, 2015.
[3] K. Cervantes-Gracia and H. Husi, “Integrative analysis of Multiple Sclerosis using a systems biology approach,” Sci. Rep., vol. 8, no. 1, pp. 1–14, 2018, doi: 10.1038/s41598-018-24032-8.
[4] T. Olsson, L. F. Barcellos, and L. Alfredsson, “Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis,” Nat. Rev. Neurol., vol. 13, no. 1, pp. 26–36, 2016, doi: 10.1038/nrneurol.2016.187.
[5] I. Jelcic et al., “Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis,” Cell, vol. 175, no. 1, pp. 85-100.e23, 2018, doi: 10.1016/j.cell.2018.08.011.
[6] A. Abulayha, A. Bredan, H. El Enshasy, and I. Daniels, “Rituximab: Modes of action, remaining dispute and future perspective,” Futur. Oncol., vol. 10, no. 15, pp. 2481–2492, 2014, doi: 10.2217/fon.14.146.
[7] V. F. Cuzzola et al., “Pharmacogenomic update on multiple sclerosis: A focus on actual and new therapeutic strategies,” Pharmacogenomics J., vol. 12, no. 6, pp. 453–461, 2012, doi: 10.1038/tpj.2012.41.
[8] E. Tsareva, O. Kulakova, A. Boyko, and O. Favorova, “Pharmacogenetics of multiple sclerosis: Personalized therapy with immunomodulatory drugs,” Pharmacogenet. Genomics, vol. 26, no. 3, pp. 103–115, 2016, doi: 10.1097/FPC.0000000000000194.
[9] C. Fenoglio et al., “LncRNAs expression profile in peripheral blood mononuclear cells from multiple sclerosis patients,” J. Neuroimmunol., vol. 324, no. August, pp. 129–135, 2018, doi: 10.1016/j.jneuroim.2018.08.008.
[10] Q. M. Liu et al., “Silencing lncRNA TUG1 Alleviates LPS-Induced Mouse Hepatocyte Inflammation by Targeting miR-140/TNF,” Front. Cell Dev. Biol., vol. 8, no. February, pp. 1–11, 2021, doi: 10.3389/fcell.2020.616416.
[11] C. Guo, Y. Qi, J. Qu, L. Gai, Y. Shi, and C. Yuan, “Pathophysiological Functions of the lncRNA TUG1,” Current Pharmaceutical Design, vol. 26, no. 6. pp. 688–700, 2019, doi: 10.2174/1381612826666191227154009.
[12] Y. Li et al., “Effects of complement and serum IgG on rituximab ‑ dependent natural killer cell ‑ mediated cytotoxicity against Raji cells,” pp. 339–347, 2019, doi: 10.3892/ol.2018.9630.
[13] Behmanesh, M ; Moradi, “Evaluation of the role of long noncoding RNAs lnc-DC and TUG1 on the regulation of BDNF expression and cell cycle,” Tarbiat Modares, 1398.
[14] S. T. Livak KJ, “Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.,” no. 2001 Dec;25(4):402–8., doi: doi: 10.1006/meth.2001.1262.
[15] N. Nissimov et al., “B cells reappear less mature and more activated after their anti-CD20-mediated depletion in multiple sclerosis,” Proc. Natl. Acad. Sci. U. S. A., vol. 117, no. 41, pp. 25690–25699, 2020, doi: 10.1073/pnas.2012249117.
[16] C. G. Chisari, E. Sgarlata, S. Arena, S. Toscano, M. Luca, and F. Patti, “Rituximab for the treatment of multiple sclerosis: a review,” J. Neurol., vol. 269, no. 1, pp. 159–183, 2022, doi: 10.1007/s00415-020-10362-z.
[17] S. Brancati, L. Gozzo, L. Longo, D. C. Vitale, and F. Drago, “Rituximab in Multiple Sclerosis: Are We Ready for Regulatory Approval?,” Front. Immunol., vol. 12, no. July, 2021, doi: 10.3389/fimmu.2021.661882.
[18] M. S. Czuczman et al., “Acquirement of rituximab resistance in lymphoma cell lines is associated with both global CD20 gene and protein down-regulation regulated at the pretranscriptional and posttranscriptional levels,” Clin. Cancer Res., vol. 14, no. 5, pp. 1561–1570, 2008, doi: 10.1158/1078-0432.CCR-07-1254.
[19] M. R. Smith, “Rituximab ( monoclonal anti-CD20 antibody ): mechanisms of action and resistance,” pp. 7359–7368, 2003, doi: 10.1038/sj.onc.1206939.
[20] J. Edelmann et al., “Rituximab Activates NOTCH1 Signaling in CLL Cells and Induces Changes in the Cytokine Repertoire Favoring a Tumor-Protective Microenvironment,” Blood, vol. 130, no. Supplement 1. pp. 2996–2996, 2017, doi: 10.1182/blood.V130.Suppl_1.2996.2996.
[21] K. Katsushima et al., “Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment,” Nature Communications, vol. 7. 2016, doi: 10.1038/ncomms13616.
[22] E. b. Zhang et al., “P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression.,” Cell Death Dis., vol. 5, pp. 1–12, 2014, doi: 10.1038/cddis.2014.201.
[23] W. Zhong et al., “Increased interleukin-17A levels promote rituximab resistance by suppressing p53 expression and predict an unfavorable prognosis in patients with diffuse large B cell lymphoma,” Int. J. Oncol., vol. 52, no. 5, pp. 1528–1538, 2018, doi: 10.3892/ijo.2018.4299.
[24] D. Wu et al., “Long noncoding RNA TUG1 promotes osteogenic differentiation of human periodontal ligament stem cell through sponging microRNA-222-3p to negatively regulate Smad2/7,” Arch. Oral Biol., vol. 117, 2020, doi: 10.1016/j.archoralbio.2020.104814.
[25] K. C. Kawabata, S. Ehata, A. Komuro, K. Takeuchi, and K. Miyazono, “TGF-β-induced apoptosis of B-cell lymphoma Ramos cells through reduction of MS4A1/CD20,” Oncogene, vol. 32, no. 16, pp. 2096–2106, 2013, doi: 10.1038/onc.2012.219.
[26] H. Zhou, L. Sun, and F. Wan, “Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells (Review),” Oncol. Lett., vol. 18, no. 5, pp. 4393–4402, 2019, doi: 10.3892/ol.2019.10848.
[27] C. Qin and F. Zhao, “Long non-coding RNA TUG1 can promote proliferation and migration of pancreatic cancer via EMT pathway,” pp. 2377–2384, 2017.
[28] Q. Li et al., “lncRNA TUG1 modulates proliferation, apoptosis, invasion, and angiogenesis via targeting miR-29b in trophoblast cells,” Hum. Genomics, vol. 13, no. 1, p. 50, 2019, doi: 10.1186/s40246-019-0237-z.