Simple and rapid identification of aflatoxin B1 using a colorimetric aptasensor based on gold nanoparticles

Document Type : Original Research

Authors

1 Malek Ashtar University of Technology

2 North Khorasan University of Medical Sciences

3 Faraja department of Law Enforcement Sciences

Abstract
Aflatoxin B1 is a type of mycotoxin produced by Aspergillus fungi during food production and storage. Aflatoxins have many toxic effects on the body that cause mutagens, teratogens and have high carcinogenic properties that cause cancer in the liver and other organs. Although conventional device methods for measuring aflatoxin B1 in food are sensitive and accurate, they have disadvantages such as high diagnostic time, high cost, the need for a trained user, and the creation of false positive results. Therefore, the development of new measuring methods has been prioritized by researchers. Among these measurement methods is the use of biosensors, which are fast, simple and more affordable and are used in the food industry today. In this work, a colorimetric optical aptasensor using gold nanoparticles with appropriate sensitivity and high selectivity was used to detect aflatoxin B1 in serum and buffer. For this purpose, gold nanoparticles were synthesized by reducing HAuCl4 by sodium citrate (with a size of 14.40 nm and a zeta potential of -27.5). In this method, the protective effect of DNA sequence on the surface of gold nanoparticles has been used in the presence or absence of aflatoxin with the intervention of salt and the characteristic of visual color change. The detection limit of this method was estimated to be 50 ng/L and its linear range was 200-28000 ng/L. As a result, the designed aptasensor can be used for quick identification and screening of this toxin in contaminated food.

Keywords

Subjects


1. Ismail, A., Gonçalves, B.L., de Neeff, D.V., Ponzilacqua, B., Coppa, C.F.S.C., Hintzsche, H., Sajid, M., Cruz, A.G., Corassin, C.H., Oliveira, C.A.F. (2018) Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Res. Int. 113, 74-85.
2. Akhtar, S., Shahzad, M.A., Yoo, S-H., Ismail, A., Hameed, A., Ismail, T., Riaz, M. (2017) Determination of Aflatoxin M 1 and Heavy Metals in Infant Formula Milk Brands Available in Pakistani Markets. Korean J. Food Sci. Anim. Resour. 37 , 79-86.
3. Khorrami, R., Pooyanmehr, M., Ebrahim M., Soroor, N., Gholami, S. (2022) Evaluation of some aflatoxins in feed ingredients of livestock and poultry by HPLC method, a local study in kermanshah province. Iranian J. Veterinary Med. 16, 228-310.
4.Shabeer, S., Asad, S., Jamal, A., Ali, A. (2022) Aflatoxin contamination, its impact and management strategies: An updated review. Toxins, 14: 307.
5. Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food. Sci. Nutr. (2020), 60, 2773–2789.
6. Khoshpey, B., Farhud, D., Zaini, F. (2011) Aflatoxins in Iran: Nature, hazards and carcinogenicity. Iranian J. Public Health. 40, 1-30.
7. Mohammadi, M., Mohebbi, G., Hajeb, P., Akbarzadeh, S., Shojaee, I. (2012) Aflatoxins in rice imported to Bushehr, a southern port of Iran. Am. Eurasian J. Toxicol. Sci. 4, 31-5.
8. Mozaffari Nejad, A.S., Heshmati, A., Ghiasvand, T. (2020) The occurrence and risk assessment of aflatoxin M1 in cheeses samples from hamadan, Iran. Iran J. Pharm. Res. 19,44-50.
9. Dhakal, A., Sbar, E. Aflatoxin Toxicity. StatPearls Publishing; 2022 , PMID: 32491713.
10. Zhang, K., Banerjee K. (2020) A review: Sample preparation and chromatographic technology for detection of aflatoxins in foods. Toxins (Basel) 12 , 539.
11. Xue, Z., Zhang, Y., Yu, W., Zhang, J., Wang, J., Wan, F., Kim, Y., Liu, Y., Kou, X. (2019) Recent advances in aflatoxin B1 detection based on nanotech.nology and nanomaterials-A review. Anal. Chem. Acta. 1069 ,1-27.
12. Li, H., Wang, D., Tang, X., Zhang, W., Zhang, Q., Li, P. (2020) Time-resolved fluorescence immunochromatography assay (TRFICA) for aflatoxin: Aiming at increasing strip method sensitivity. Front. Microbiol. 11,676.
13. Marin, M., Nikolic, M.V., Vidic, J. (2021) Rapid pont of need detection of bacteria and their toxins in food using gold nanoparticles. Compr. Rev. Food Sci. Food Saf. 20, 5880-5900.
14. Nooranian, S., Mohammadinejad, A., Mohajeri, T., Aleyaghoob, G., Kazemi Oskuee, R. (2021) Biosensors based on aptamer-conjugated gold nanoparticles: A review. Biotechnol. Appl. Biochem. doi: 10.1002/bab.2224.
15. Negahdary, M., Angnes, L. (2022) Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimers disease: A review. Mater. Sci. Eng. C. Mater. Biol. Appl. 135,112689.
16. Alipour, M., Zeinoddini, M., Saeedinia, A.R. (2018) Anti-Trinitrotoluene aptamer: Design, functional assessment and optimization. Appl. Biochem. Microbio. 54,677-681.
17. Hosseini, M., Khabbaz, H., Dadmehr,M Ganjali, MR., Mohamadnejad, J. (2015) Aptamer-based Colorimetric and Chemiluminescence Detection of Aflatoxin B1 in Foods Samples. Acta. Chim. Slov. 62, 721–728.
18. Jalalian, S.H., M. Ramezani, N.M. Danesh, M. Alibolandi, K. Abnous, S.M. Taghdisi, (2018) A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode, Biosens. Bioelectron. 117 , 487-492.
19. Barkheh, H., Zeinoddini, M., Ranjbar, B. Xodadadi, N. (2021) A novel strategy for trinitrotoluene detection using functionalized gold nanoparticles. J. Anal. Chem. 76,459–465.
20. Hua, Z., Yu, T., Liu, D., Xianyu, Y. (2021) Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron. 179, 113076. doi: 10.1016/j.bios.2021.113076.
21. Castillo, G., Spinella, K., Poturnayov´a, A., ˇSnejd´arkov´a, M., Mosiello, L., Hianik, T. (2015) Detection of aflatoxin B1 by aptame rbased biosensor using PAMAM dendrimers as immobilization platform. Food Control. 52, 9–18.
22. Zhang, Y., Liu, W., Zhang, W., Yu, S., Yue, X., Zhu, W., Zhang, D., Wang, Y., Wang, J. (2015) DNA-mediated gold nanoparticle signal transducers for combinatorial logic operations and heavy metal ions sensing, Biosens. Bioelectron. 72 , 218-224.
23. Faridfar, G., Zeinoddini, M., Akbarzedehkolahi, S., Faridfar, S., Nemati, A.S. (2021) Immunodiagnostic of Vibrio cholerae O1 using localized surface plasmon resonance (LSPR) biosensor. Int. Microbiol. 24, 115-122.
24. Yaghubi, F., Zeinoddini, M., Saeedinia, A.R., Azizi, A., Nemati, A.S. (2020) Design of localized surface plasmon resonance (LSPR) biosensor for immunodiagnostic of E. coli O157: H7 using gold nanoparticles conjugated to the chicken antibody. Plasmonics. 15, 1481-1487.
25. Zeinoddini, M., Azizi, A., Bayat, S., Tavasoli, Z. (2018) Localized surface plasmon resonance (LSPR) detection of diphtheria toxoid using gold nanoparticle-monoclonal antibody conjugates. Plasmonics, 13, 583-590.
26. Jia, Y., Zhou, G., Liu, P., Li, Z., Yu, B. (2019) Recent development of aptamer sensor for the quantification of aflatoxin B1. Appl. Sci. 9, 2364.
27. Shim, WB., Kim, MJ., Mun, H., Kim, MG. (2014) An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens. Bioelectron. 62, 288–294.
28.Jafari, M., Rezaei, M., Kalantari, H., Tabarzad, M., Daraei, B. (2017) Optimization of aflatoxin B1 aptasensing. J. Toxicol. 2017,2461354
29. Danesh, N.M., Bostan, H.B., Abnous, K., Ramezani, M., Youssefi, K., Taghdisi, S.M., Karimi, G. (2018) Ultrasensitive Detection of Aflatoxin B1 and Its Major Metabolite Aflatoxin M1 Using Aptasensors: A Review, Trends Anal. Chem. doi: 10.1016/j.trac.2017.12.009.
30. Luan, Y., Chen, Z., Xie, G., Chen, J., Lu, A., Li, C., Fu, H., Ma, Z., Wang, J. (2015) Rapid visual 645 detection of aflatoxin b1 by label-free aptasensor using unmodified gold nanoparticles, J. Nanosci. Nanotechnol. 15 ,1357-1361.
31. Sun, W., Lu, Y., Mao, J., Chang, N., Yang, J., Liu, Y. (2015) Multidimensional sensor for pattern recognition of proteins based on DNA–gold nanoparticles conjugates, Analytical chemistry, 87 , 3354- 59.
32. Istamboulie, G., Paniel, N., Zara, L., Granados, L.R., Barthelmebs, L., Noguer, T. (2016) Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk, Talanta, 146 , 464-469.
33. Shim, W. B., Mun, H., Joung, H. A., Ofori, J.A., Chung, D. H., Kim, M.G. (2014) Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples, Food Control. 36 ,658 30-35.
34. Liu, J.L., Zhao, M., Zhuo, Y., Chai, Y.Q., Yuan, R. (2017) Highly efficient intramolecular electrochemiluminescence energy transfer for ultrasensitive bioanalysis of aflatoxin M1. Chemistry-A European J. 23 , 1853-1859.
35. Guo, X., Wen, F., Zheng, N., Luo, Q., Wang, H., Wang, H., Li, S., Wang, J. (2014) Development of an ultrasensitive aptasensor for the detection of aflatoxin B 1. Biosens. Bioelectron. 56 , 340-344.
36. Guo, X. Wen, F. Zheng, N. Li, S., Fauconnier, M.L., Wang, J. (2016) A qPCR aptasensor for sensitive detection of aflatoxin M1, Anal. Bioanal. Chem. 408 , 5577-5584.
37. Zhao, Y., Yang, Y., Luo, Y., Yang, X., Li, M., Song, Q., (2015) Double detection of mycotoxins based on SERS labels embedded Ag@ Au core–shell nanoparticles. ACS Appl. Mater. Interfaces. 7 , 21780-21786.
38. Aike, L., Xu, C., Tang, L., Ma, W., Xu, L., Kuang, H., Liu, L., Wu, X., Song, S., Song D., Chen, X. (2015) A SERS-active sensor based on heterogeneous gold nanostar core–silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale. 4. DOI: 10.1039/C5NR08372A.
39. Sun, L., Wu, L., Zhao, Q. (2017) Aptamer based surface plasmon resonance sensor for aflatoxin B1. Microchimica. Acta. 184 , 2605-2610.
40. Chalyan, T., Pasquardini, L., Gandolfi, D., Guider, R., Samusenko, A., Zanetti, M., Pucker, G., Pederzolli, C., Pavesi, L. (2017) Aptamer-and Fab’-functionalized microring resonators for aflatoxin M1 detection. IEEE J Sel. Topics Quantum Electron. 23 , 1-8.
41. Zhang, J., Li, Z., Zhao, S., Lu, Y. (2016) Size-dependent modulation of graphene oxide–aptamer interactions for an amplified fluorescence-based detection of aflatoxin B 1 with a tunable dynamic range, Analyst, 141 , 4029-4034.
42. Chen, L., Wen, F., Li, M., Guo, X., Li, S., Zheng, N., Wang, J. (2017) A simple aptamer-747 based fluorescent assay for the detection of Aflatoxin B 1 in infant rice cereal, Food Chem. 215 , 377-382.
43. Sabet, F.S., Hosseini, M., Khabbaz, H., Dadmehr, M., Ganjali, M.R. (2017) FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice, Food Chem. 220 , 527-532.
44. Wang, B., Chen, Y., Wu, Y., Weng, B., Liu, Y., Lu, Z., Li, C.M., Yu, C. (2016) Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB 1. Biosens. Bioelectron. 78 , 23-30.
45. Lu, Z., Chen, X., Wang, Y., Zheng, X., Li, C.M. (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchimica. Acta. 182 , 571-578.
46. Zhang, J., Xia, Y.K., Chen, M., Wu, D.Z., Cai, S.X., Liu, M.M., He, W.H., Chen, J.H. (2016) A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn (II)-ion signal enhancement for simultaneous detection of OTA and AFB 1. Sen. Act. B. Chemical. 235 , 79-85.
47. Mahmood Khan, I., Niazi, S., Yu, Y., Mohsin, A., Mushtaq, BS. Iqbal, MW., Rehman, A., Akhtar, W., Wang, Z. (2019) Aptamer induced multicolored AuNCs-WS2 “Turn on” FRET nano platform for dual-color simultaneous detection of AflatoxinB1 and zearalenone. Anal. Chem. 91, 14085−14092
48. Corcuera, L.A., Ibanez-Vea, M., Vettorazzi, A., Gonzalez-Penas, E., & Cerain, A. L. (2011) Validation of a UHPLC-FLD analytical method for the simultaneous quantification of aflatoxin B1 and ochratoxin a in rat plasma, liver and kidney. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879, 2733–2740.
49. Xiulan, S., Xiaolian, Z., Jian, T., Zhou, J., & Chu, F. S. (2005) Preparation of goldlabeled antibody probe and its use in immunochromatography assay for Detection of aflatoxin B1. Int. J. Food Microbiol. 99, 185–194.
50. Goryacheva, I. Y., De Saeger, S., Delmulle, B., Lobeau, M., Eremin, S. A., Barna-Vetro, I., Van Peteghem, C. (2007) Simultaneous non-instrumental detection of aflatoxin B1 and ochratoxin A using a clean-up tandem immunoassay column. Analyt. Chimica. Acta. 590, 118–124.
51. Saha, D., Acharya, D., Roy, D., Shrestha, D., & Dhar, T. K. (2007) Simultaneous enzyme immunoassay for the screening of aflatoxin B1 and ochratoxin A in chili samples. Analyt. Chimica. Acta. 584, 343–349.
52. Evtugyn, G., Porfireva, A., Stepanova, V., Sitdikov, R., Stoikov, I., Nikolelis, D., & Hianik, T. (2014) Electrochemical aptasensor based on polycarboxylic macrocycle modified with neutral red for aflatoxin B1 detection. Electroanalysis, 26, 2100–2109.
53. Castillo, G., Spinella, K., Poturnayová, A., Šnejdárková, M., Mosiello, L., & Hianik, T. (2015) Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control 52, 9–18.
54. Seok, Y., Byun, J. Y., Shim, W. B., & Kim, M. G. (2015) A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Analyt. Chimica. Acta, 886, 182–187.
55. Moscone, D., Arduini, F., & Amine, A. (2011) A rapid enzymatic method for aflatoxin B detection. Methods Mol. Biol. 739, 217–235