1. De Klerk, C., et al., Socioeconomic and ethnic inequities within organised colorectal cancer screening programmes worldwide. Gut, 2018. 67(4): p. 679-687.
2. Arnold, M., et al., Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017. 66(4): p. 683-691.
3. Meyerhardt, J.A. and R.J. Mayer, Systemic therapy for colorectal cancer. New England journal of medicine, 2005. 352(5): p. 476-487.
4. Jiang, M.-C., et al., Emerging roles of lncRNA in cancer and therapeutic opportunities. American journal of cancer research, 2019. 9(7): p. 1354.
5. Hombach, S. and M. Kretz, Non-coding RNAs: classification, biology and functioning. Non-coding RNAs in colorectal cancer, 2016: p. 3-17.
6. Cai, Y., et al., A brief review on the mechanisms of miRNA regulation. Genomics, proteomics & bioinformatics, 2009. 7(4): p. 147-154.
7. Schatoff, E.M., B.I. Leach, and L.E. Dow, Wnt signaling and colorectal cancer. Current colorectal cancer reports, 2017. 13(2): p. 101-110.
8. Jung, Y.-S. and J.-I. Park, Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Experimental & Molecular Medicine, 2020. 52(2): p. 183-191.
9. Chen, H.-Y., et al., miR-103/107 prolong Wnt/β-catenin signaling and colorectal cancer stemness by targeting Axin2. Scientific reports, 2019. 9(1): p. 1-13.
10. Dai, W., et al., miR-424-5p promotes the proliferation and metastasis of colorectal cancer by directly targeting SCN4B. Pathology-Research and Practice, 2020. 216(1): p. 152731.
11. Li, N., CircTBL1XR1/miR-424 axis regulates Smad7 to promote the proliferation and metastasis of colorectal cancer. Journal of Gastrointestinal Oncology, 2020. 11(5): p. 918.
12. Cheng, C., et al., FENDRR sponges miR-424-5p to inhibit cell proliferation, migration and invasion in colorectal cancer. Technology in cancer research & treatment, 2020. 19: p. 1533033820980102.
13. Anastas, J.N. and R.T. Moon, WNT signalling pathways as therapeutic targets in cancer. Nature Reviews Cancer, 2013. 13(1): p. 11-26.
14. Clevers, H. and R. Nusse, Wnt/β-catenin signaling and disease. Cell, 2012. 149(6): p. 1192-1205.
15. Mohammadi, A., B. Mansoori, and B. Baradaran, The role of microRNAs in colorectal cancer. Biomedicine & Pharmacotherapy, 2016. 84: p. 705-713.
16. Najafi, H., et al., Alternative splicing of the OCC-1 gene generates three splice variants and a novel exonic microRNA, which regulate the Wnt signaling pathway. RNA, 2017. 23(1): p. 70-85.
17. Xu, X.M., et al., Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncology letters, 2012. 4(2): p. 339-345.
18. Hsieh, I.-S., et al., MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis, 2013. 34(3): p. 530-538.
19. Kim, N.H., et al., p53 and microRNA-34 are suppressors of canonical Wnt signaling. Science signaling, 2011. 4(197): p. ra71-ra71.
20. Kim, N.H., et al., p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell cycle, 2013. 12(10): p. 1578-1587.
21. Su, J., et al., MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin. International journal of oncology, 2012. 40(4): p. 1162-1170.
22. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. cell, 2005. 120(1): p. 15-20.
23. Wei, S., et al., miR-424-5p promotes proliferation of gastric cancer by targeting Smad3 through TGF-β signaling pathway. Oncotarget, 2016. 7(46): p. 75185.
24. Xu, J., et al., CUL2 overexpression driven by CUL2/E2F1/miR-424 regulatory loop promotes HPV16 E7 induced cervical carcinogenesis. Oncotarget, 2016. 7(21): p. 31520.
25. Zhang, D., et al., Hypoxia-induced miR-424 decreases tumor sensitivity to chemotherapy by inhibiting apoptosis. Cell death & disease, 2014. 5(6): p. e1301-e1301.
26. Zhang, M., et al., MiR-424 promotes non-small cell lung cancer progression and metastasis through regulating the tumor suppressor gene TNFAIP1. Cellular Physiology and Biochemistry, 2017. 42(1): p. 211-221.
27. Rogers, H., et al., An investigation of WNT pathway activation and association with survival in central nervous system primitive neuroectodermal tumours (CNS PNET). British journal of cancer, 2009. 100(8): p. 1292-1302.
28. Voronkov, A. and S. Krauss, Wnt/beta-catenin signaling and small molecule inhibitors. Current pharmaceutical design, 2013. 19(4): p. 634-664.