1. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 2020. 395(10223): p. 497-506.
2. Song, Z., et al., From SARS to MERS, thrusting coronaviruses into the spotlight. viruses, 2019. 11(1): p. 59.
3. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 9 May 2022; Available from: https://covid19.who.int/.
4. Hu, B., et al., Bat origin of human coronaviruses. Virology journal, 2015. 12(1): p. 1-10.
5. Nguyena, T.T., et al., Origin of Novel Coronavirus (COVID-19): A Computational Biology Study using Artificial Intelligence.
6. Menachery, V.D., et al., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature medicine, 2015. 21(12): p. 1508-1513.
7. Casalino, L., et al., Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Central Science, 2020. 6(10): p. 1722-1734.
8. Yan, R., et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020. 367(6485): p. 1444-1448.
9. Yang, J., et al., Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nature communications, 2020. 11(1): p. 1-10.
10. Shang, J., et al., Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences, 2020. 117(21): p. 11727-11734.
11. European Bioinformatics Institute (EMBL-EBI), S.S.I.o.B., Protein Information Resource (PIR). UniProtKB - P0DTC9 (NCAP_SARS2). May 9, 2022; Available from: https://www.uniprot.org/uniprot/P0DTC9.
12. European Bioinformatics Institute (EMBL-EBI), S.S.I.o.B., Protein Information Resource (PIR). UniProtKB - P0DTC2 (SPIKE_SARS2). May 9, 2022; Available from: https://www.uniprot.org/uniprot/P0DTC2.
13. European Bioinformatics Institute (EMBL-EBI), S.S.I.o.B., Protein Information Resource (PIR). UniProtKB - P0DTC5 (VME1_SARS2). May 9, 2022; Available from: https://www.uniprot.org/uniprot/P0DTC5.
14. European Bioinformatics Institute (EMBL-EBI), S.S.I.o.B., Protein Information Resource (PIR). UniProtKB - P0DTC4 (VEMP_SARS2). May 9, 2022; Available from: https://www.uniprot.org/uniprot/P0DTC4.
15. Watanabe, Y., et al., Exploitation of glycosylation in enveloped virus pathobiology. Biochimica et Biophysica Acta (BBA)-General Subjects, 2019. 1863(10): p. 1480-1497.
16. European Bioinformatics Institute (EMBL-EBI), S.S.I.o.B., Protein Information Resource (PIR). UniProtKB - P0DTD1 (R1AB_SARS2). May 9, 2022; Available from: https://www.uniprot.org/uniprot/P0DTD1.
17. Walls, A.C., et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020. 181(2): p. 281-292. e6.
18. Shajahan, A., et al., Deducing the N-and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology, 2020. 30(12): p. 981-988.
19. Watanabe, Y., et al., Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 2020. 369(6501): p. 330-333.
20. Grant, O.C., et al., Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Scientific reports, 2020. 10(1): p. 1-11.
21. Henderson, R., et al., Glycans on the SARS-CoV-2 spike control the receptor binding domain conformation. bioRxiv, 2020.
22. Shang, J., et al., Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020. 581(7807): p. 221-224.
23. Gámez, G., et al., Atypical N-glycosylation of SARS-CoV-2 impairs the efficient binding of Spike-RBM to the human-host receptor hACE2. bioRxiv, 2021.
24. Gu, H., et al., Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science, 2020. 369(6511): p. 1603-1607.
25. Sanda, M., L. Morrison, and R. Goldman, N-and O-Glycosylation of the SARS-CoV-2 spike protein. Analytical chemistry, 2021. 93(4): p. 2003-2009.
26. Watanabe, Y., et al., Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nature communications, 2020. 11(1): p. 1-10.
27. Zhang, S., et al., Analysis of glycosylation and disulfide bonding of wild-type SARS-CoV-2 spike glycoprotein. bioRxiv, 2021.
28. Mehdipour, A.R. and G. Hummer, Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proceedings of the National Academy of Sciences, 2021. 118(19).
29. Tortorici, M.A., et al., Structural basis for human coronavirus attachment to sialic acid receptors. Nature structural & molecular biology, 2019. 26(6): p. 481-489.
30. Varki, A. and P. Gagneux, Multifarious roles of sialic acids in immunity. Annals of the New York Academy of Sciences, 2012. 1253(1): p. 16.
31. Bouwman, K.M., et al., Multimerization-and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathogens, 2021. 17(2): p. e1009282.
32. Göker, H., et al., The effects of blood group types on the risk of COVID-19 infection and its clinical outcome. Turkish journal of medical sciences, 2020. 50(4): p. 679-683.
33. Deleers, M., et al., Covid-19 and blood groups: ABO antibody levels may also matter. International Journal of Infectious Diseases, 2021. 104: p. 242-249.
34. Solmaz, İ. and S. Araç, ABO blood groups in COVID‐19 patients; Cross‐sectional study. International journal of clinical practice, 2021. 75(4): p. e13927.
35. Zhang, Y., et al., Site-specific N-glycosylation characterization of recombinant SARS-CoV-2 spike proteins. Molecular & Cellular Proteomics, 2021. 20: p. 100058.
36. Klein, J.A. and J. Zaia, Assignment of coronavirus spike protein site-specific glycosylation using GlycReSoft. bioRxiv, 2020.
37. Watanabe, Y., et al., Native-like SARS-CoV-2 spike glycoprotein expressed by ChAdOx1 nCoV-19/AZD1222 vaccine. ACS Central Science, 2021.
38. Bagdonaite, I., et al., Site-specific O-glycosylation analysis of SARS-CoV-2 spike protein produced in insect and human cells. Viruses, 2021. 13(4): p. 551.
39. Marth, J.D. and P.K. Grewal, Mammalian glycosylation in immunity. Nature Reviews Immunology, 2008. 8(11): p. 874-887.
40. European Bioinformatics Institute (EMBL-EBI), S.S.I.o.B., Protein Information Resource (PIR). UniProtKB - P59594 (SPIKE_SARS). April 7, 2021; Available from: https://www.uniprot.org/uniprot/P59594.
41. Xu, W., et al., Variations in SARS-CoV-2 spike protein cell epitopes and glycosylation profiles during global transmission course of COVID-19. Frontiers in Immunology, 2020. 11: p. 2222.
42. TheCommitteeToAdviseOnTropicalMedicineAndTravel(CATMAT). STATEMENT ON TRAVELLERS AND RABIES VACCINE. 2002; Available from: https://publications.gc.ca/collections/Collection/H12-21-2-28-4.pdf.
43. European Bioinformatics Institute (EMBL-EBI), S.S.I.o.B., Protein Information Resource (PIR). P35961 · ENV_HV1Y2. 2022; Available from: https://www.uniprot.org/uniprotkb/P35961/entry.
44. European Bioinformatics Institute (EMBL-EBI), S.S.I.o.B., Protein Information Resource (PIR), P03524 · GLYCO_RABVE. 2022.
45. (Gavi), T.V.A. How effective are COVID-19 vaccines in the real-world? 23 July 2021; Available from: https://www.gavi.org/vaccineswork/how-effective-are-covid-19-vaccines-real-world.