A review of diagnostic methods based on gold nanoparticles

Document Type : Analytic Review

Authors

Malek Ashtar University of Technology

Abstract
Gold nanoparticles (GNPs) with unique optical properties, such as easy operation and visualized assay, have a great ability to detect different types of analytes. Today, the use of gold nanoparticles has wide applications in the field of medicine and biotechnology, including the detection of microorganisms that cause contamination in water, air and food and it is considered a suitable alternative for chemical and physical methods. New technologies in the design of biosensors based on GNPs provide the ability to identify biological compounds accurately and quickly. One of these technologies is a detection sensor based on surface plasmon resonance (SPR), which based on its optical properties, is capable of very sensitive and specific measurement of biomolecule interactions without time delay. This technology can quantify in a short time the properties of biomolecular mediators (such as oligonucleotides, proteins and bacteria) on the surface, including reaction speed, tendency and concentration of surface mediators. In this review, while investigating the surface plasmon properties of gold nanoparticles, the simple diagnostic applications of gold nanoparticles based on the localized surface plasmon (LSPR) method and detection in biomedicine.


Keywords

Subjects


[1] Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A. (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics.2, 107-18.
[2] Amendola, V., Pilot, R., Frasconi, M., Maragò, O.M., Iatì, M.A. (2017) Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter.29(20), 203002.
[3] Yeh, Y-C., Creran, B., Rotello, V.M. (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale.4(6), 1871-80.
[4] Daraee, H., Eatemadi, A., Abbasi, E., Fekri Aval, S., Kouhi, M., Akbarzadeh, A. (2016) Application of gold nanoparticles in biomedical and drug delivery. Artificial cells, nanomedicine, and biotechnology.44(1), 410-22.
[5] Baptista, P., Pereira, E., Eaton, P., Doria, G., Miranda, A., Gomes, I. (2008) Gold nanoparticles for the development of clinical diagnosis methods. Analytical and bioanalytical chemistry.391, 943-50.
[6] Pines, D., Bohm, D. (1952) A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Physical Review.85(2), 338.
[7] Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C. (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications. p. 668-77.
[8] Willets, K.A., Van Duyne, R.P. (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem.58, 267-97.
[9] Motl, N., Smith, A., DeSantis, C., Skrabalak, S. (2014) Engineering plasmonic metal colloids through composition and structural design. Chemical Society Reviews.43(11), 3823-34.
[10] Cheng, H-P., Chuang, H-S. (2019) Rapid and sensitive nano-immunosensors for botulinum. Acs Sensors.4(7), 1754-60.
[11] Balbinot, S., Srivastav, A.M., Vidic, J., Abdulhalim, I., Manzano, M. (2021) Plasmonic biosensors for food control. Trends in Food Science & Technology.111, 128-40.
[12] Lin, Z., He, L. (2019) Recent advance in SERS techniques for food safety and quality analysis: A brief review. Current Opinion in Food Science.28, 82-7.
[13] Marin, M., Nikolic, M.V., Vidic, J. (2021) Rapid point‐of‐need detection of bacteria and their toxins in food using gold nanoparticles. Comprehensive Reviews in Food Science and Food Safety.20(6), 5880-900.
[14] Storhoff, J.J., Lazarides, A.A., Mucic, R.C., Mirkin, C.A., Letsinger, R.L., Schatz, G.C. (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society.122(19), 4640-50.
[15] Nimse, S.B., Song, K., Sonawane, M.D., Sayyed, D.R., Kim, T. (2014) Immobilization techniques for microarray: challenges and applications. Sensors.14(12), 22208-29.
[16] Cai, H., Wang, Y., He, P., Fang, Y. (2002) Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Analytica Chimica Acta.469(2), 165-72.
[17] Xu, C., Cai, H., Xu, Q., He, P., Fang, Y. (2001) Characterization of single-stranded DNA on chitosan-modified electrode and its application to the sequence-specific DNA detection. Fresenius' journal of analytical chemistry.369, 428-32.
[18] Oliveira, B.B., Ferreira, D., Fernandes, A.R., Baptista, P.V. (2023) Engineering gold nanoparticles for molecular diagnostics and biosensing. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology.15(1), e1836.
[19] Amirinejad, R., Shirvani-Farsani, Z., Mohebbi, S. (2021) The application of DNA-conjugated gold nanoparticles to detect metabolites and nucleic acids in personalized medicine. Personalized Medicine Journal.6(21), 23-5.
[20] Yaghubi, F., Zeinoddini, M., Saeedinia, A.R., Azizi, A., Samimi Nemati, A. (2020) Design of localized surface plasmon resonance (LSPR) biosensor for immunodiagnostic of E. coli O157: H7 using gold nanoparticles conjugated to the chicken antibody. Plasmonics.15, 1481-7.
[21] Faridfar, G., Zeinoddini, M., Akbarzedehkolahi, S., Faridfar, S., Nemati, A.S. (2021) Immunodiagnostic of Vibrio cholerae O1 using localized surface plasmon resonance (LSPR) biosensor. International Microbiology.24, 115-22.
[22] Zeinoddini, M., Azizi, A., Bayat, S., Tavasoli, Z. (2018) Localized surface plasmon resonance (LSPR) detection of diphtheria toxoid using gold nanoparticle-monoclonal antibody conjugates. Plasmonics.13, 583-90.
[23] Taheri, R.A., Rezayan, A.H., Rahimi, F., Mohammadnejad, J., Kamali, M. (2016) Development of an immunosensor using oriented immobilized anti-OmpW for sensitive detection of Vibrio cholerae by surface plasmon resonance. Biosensors and Bioelectronics.86, 484-8.
[24] Huq, A., Haley, B.J., Taviani, E., Chen, A., Hasan, N.A., Colwell, R.R. (2012) Detection, isolation, and identification of Vibrio cholerae from the environment. Current protocols in microbiology.26(1), 6A. 5.1-6A. 5.51.
[25] Qadami, F., Molaeirad, A., Alijanianzadeh, M., Azizi, A., Kamali, N. (2018) Localized surface plasmon resonance (LSPR)-based nanobiosensor for methamphetamin measurement. Plasmonics.13, 2091-8.
[26] Kim, H., Lee, J.U., Song, S., Kim, S., Sim, S.J. (2018) A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarkers. Biosensors and Bioelectronics.101, 96-102.
[27] Chang, K., Wang, S., Zhang, H., Guo, Q., Hu, X., Lin, Z. (2017) Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers. PLoS One.12(5), e0177131.
[28] Basso, C.R., Tozato, C.C., Crulhas, B.P., Castro, G.R., Junior, J.P.A., Pedrosa V.A. (2018) An easy way to detect dengue virus using nanoparticle-antibody conjugates. Virology.513, 85-90.
[29] Mucic, R.C., Storhoff, J.J., Mirkin, C.A., Letsinger, R.L. (1998) DNA-directed synthesis of binary nanoparticle network materials. Journal of the American Chemical Society.120(48), 12674-5.
[30] Ferrari, E. (2023) Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors.13(3), 411.
[31] Li, H., Rothberg, L. (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences.101(39), 14036-9.
[32] Liu, J., Lu, Y. (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie International Edition.45(1), 90-4.
[33] Nam, J-M., Thaxton, C.S., Mirkin, C.A. (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. science.301(5641), 1884-6.
[34] Wang, W., Chen, C., Qian, M., Zhao, X.S. (2008) Aptamer biosensor for protein detection using gold nanoparticles. Analytical Biochemistry.373(2), 213-9.
[35] Liu, J., Lu, Y. (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. Journal of the American Chemical Society.126(39), 12298-305.
[36] Hung, Y-L., Hsiung, T-M., Chen, Y-Y., Huang, Y-F., Huang, C-C. (2010) Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. The Journal of Physical Chemistry C.114(39), 16329-34.
[37] Wang, H., Provan, G.J., Helliwell, K. (2004) Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chemistry.87(2), 307-11.
[38] Alvarez-Puebla, R.A., dos Santos Jr, D.S., Aroca, R.F. (2007) SERS detection of environmental pollutants in humic acid–gold nanoparticle composite materials. Analyst.132(12), 1210-4.
[39] Kneipp, K., Wang, Y., Dasari, R.R., Feld, M.S., Gilbert, B.D., Janni, J. (1995) Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.51(12), 2171-5.
[40] Barkheh, H., Zeinoddini, M., Ranjbar, B. (2016) Colorimetric Detection of TNT Using Aptasensor based on Gold-nanoparticle. Journal of Police Medicine.5(3), 177-86.
[41] Barkheh, H., Zeinoddini, M., Ranjbar, B., Xodadadi, N. (2021) A Novel Strategy for Trinitrotoluene Detection Using Functionalized Gold Nanoparticles. Journal of Analytical Chemistry.76, 459-65.
[42] Sajid, M., Kawde, A-N., Daud, M. (2015) Designs, formats and applications of lateral flow assay: A literature review. Journal of Saudi Chemical Society.19(6), 689-705.
[43] Borse, V.B., Konwar, A.N., Jayant, R.D., Patil, P.O. (2020) Perspectives of characterization and bioconjugation of gold nanoparticles and their application in lateral flow immunosensing. Drug delivery and translational research.10, 878-902.
[44] Yu, W., Hao, A., Mei, Y., Yang, Y., Dai, C. (2022) A turn-on fluorescent aptasensor for ampicillin detection based on gold nanoparticles and CdTe QDs. Microchemical Journal.179, 107454.
[45] Huang, X., El-Sayed, M.A. (2010) Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of advanced research.1(1), 13-28.
[46] Kang, M.S., Lee, S.Y., Kim, K.S., Han, D-W. (2020) State of the art biocompatible gold nanoparticles for cancer theragnosis. Pharmaceutics.12(8), 701.