Escherichia Coli: the most useful host for production of recombinant proteins

Document Type : Analytic Review

Authors

1 Biotechnology department, Iranian research organization for science and technology

2 biotechnology department, Iranian Research organization for science and technology

Abstract
One of the most important hosts used for production of recombinant proteins is Escherichia Coli. For example, the most therapeutic proteins approved by FDA are produced in Escherichia Coli. Comprehensive knowledge about biologic nature of Escherichia Coli had made this microorganism to a favorable factory for production of recombinant proteins. Accessibility of this information have led to rational manipulation for changing of this small factory to intelligent system can make different recombinant proteins easier. So that, many engineered and useful strains were obtained from wild type and parental strains can produce high amount of diverse and stable recombinant proteins in lab and industrial scale. In this review, we will present some of these strains that are more widely used.



Keywords

Subjects


1. Rosano GL, Morales ES, Ceccarelli EA. New tools for recombinant protein production in Escherichia coli: A 5‐year update. Protein science. 2019;28(8):1412-22.
2. Escherich T. The intestinal bacteria of the neonate and breast-fed infant. 1884. Rev Infect Dis. 1988 Nov-Dec;10(6):1220-5. doi: 10.1093/clinids/10.6.1220. PMID: 3060950.
3. Sonnenborn U. Escherichia coli strain Nissle 1917-from bench to bedside and back: History of a special Escherichia coli strain with probiotic properties. FEMS Microbiology Letters. 2016;363(19): fnw212. DOI: 10.1093/femsle/fnw212
4. Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF . Understanding the Differences between Genome Sequences of Escherichia coli B Strains REL606 and BL21(DE3) and Comparison of the E. coli B and K-12 Genomes. Journal of Molecular Biology. 2009;394:653-680.
5. Yoon SH, Han M-J, Jeong H, Lee CH, Xia X-X, Lee D-H, et al. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome biology. 2012;13(5):1-13.
6. Monk JM, Koza A, Campodonico MA, Machado D, Seoane JM, Palsson BO, et al. Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes. Cell systems. 2016;3(3):238-51. e12.
7. Castiñeiras TS, Williams SG, Hitchcock AG, Smith DG .E. coli strain engineering for the production of advanced biopharmaceutical products. FEMS Microbiology Letters. 2018; 365(15)
8. Mairhofer J, Krempl PM, Thallinger GG, Striedner G. Finished Genome Sequence of Escherichia coli K-12 Strain HMS174 (ATCC 47011). Genome Announcements. 2014; 2(6): e00975-14. doi:10.1128/genomeA.00975-14.
9. Mahalik S, Sharma AK, Mukherjee KJ. Genome engineering for improved recombinant protein expression in Escherichia coli. Microbial Cell Factories. 2014;13(1):1-13.
10. Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of molecular biology. 1986;189(1):113-30.
11. Studier FW. Protein production by auto-induction in high-density shaking cultures. Protein expression and purification. 2005;41(1):207-34.
12. Bakhtiari N, Mirshahi M, Babaeipour V, Maghsoudi N, Tahzibi A. Down regulation of ackA-pta pathway in Escherichia coli BL21 (DE3): a step toward optimized recombinant protein expression system. Jundishapur journal of microbiology. 2014;7(2).
13. Bakhtiari N, Mirshahi M, Babaeipour V, Maghsoudi N. Inhibition of ackA and pta genes using two specific antisense RNAs reduced acetate accumulation in batch fermentation of E. coli BL21 (DE3). Iranian Journal of Biotechnology. 2010;8(4):243-51.
14. Dubendorf JW, Studier FW. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. Journal of molecular biology. 1991;219(1):45-59.
15. Kim SK, Lee D-H, Kim OC, Kim JF, Yoon SH. Tunable control of an Escherichia coli expression system for the overproduction of membrane proteins by titrated expression of a mutant lac repressor. ACS synthetic biology. 2017;6(9):1766-73.
16. Baumgarten T, Schlegel S, Wagner S, Löw M, Eriksson J, Bonde I, et al. Isolation and characterization of the E. coli membrane protein production strain Mutant56 (DE3). Scientific reports. 2017;7(1):1-14.
17. Horga LG, Halliwell S, Castiñeiras TS, Wyre C, Matos CF, Yovcheva DS, et al. Tuning recombinant protein expression to match secretion capacity. Microbial Cell Factories. 2018;17(1):1-18.
18. Du F, Liu Y-Q, Xu Y-S, Li Z-J, Wang Y-Z, Zhang Z-X, et al. Regulating the T7 RNA polymerase expression in E. coli BL21 (DE3) to provide more host options for recombinant protein production. Microbial cell factories. 2021;20(1):1-10.
19. Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, et al. Tuning Escherichia coli for membrane protein overexpression. Proceedings of the National Academy of Sciences. 2008;105(38):14371-6.
20. Stargardt P, Striedner G, Mairhofer J. Tunable expression rate control of a growth-decoupled T7 expression system by L-arabinose only. Microbial cell factories. 2021;20(1):1-17.
21. Bhawsinghka N, Glenn KF, Schaaper RM. Complete genome sequence of Escherichia coli BL21-AI. Microbiology Resource Announcements. 2020;9(10):e00009-20.
22. Khlebnikov A, Keasling JD. Effect of lacYExpression on Homogeneity of Induction from the Ptac and Ptrc Promoters by Natural and Synthetic Inducers. Biotechnology progress. 2002;18(3):672-4.
23. Novy R. Overcoming the codon bias of E. coli for enhanced protein expression. Innovations. 2001;12:1-3.
24. Lipinszki Z, Vernyik V, Farago N, Sari T, Puskas LG, Blattner FR, et al. Enhancing the translational capacity of E. coli by resolving the codon bias. ACS synthetic biology. 2018;7(11):2656-64.
25. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in microbiology. 2014;5:172.
26. Hatahet F, Nguyen VD, Salo KE, Ruddock LW. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli. Microbial cell factories. 2010;9(1):1-9.
27. Nguyen VD, Hatahet F, Salo KE, Enlund E, Zhang C, Ruddock LW. Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E. coli. Microbial cell factories. 2011;10(1):1-13.
28. Ruddock LO, FI), inventor; University of Oulu (Oulu, FI), assignee. Method for producing natively folded proteins in a prokaryotic host2016.
29. Ruddock L. CyDisCo - Tool for producing disulphide bonded proteins in bacteria. Finland: University of Oulu; 2016.
30. Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN. Chaperonins govern growth of Escherichia coli at low temperatures. Nature biotechnology. 2003;21(11):1266-7.
31. Ferrer M, Lünsdorf H, Chernikova TN, Yakimov M, Timmis KN, Golyshin PN. Functional consequences of single: double ring transitions in chaperonins: life in the cold. Molecular microbiology. 2004;53(1):167-82.
32. Browning DF, Richards KL, Peswani AR, Roobol J, Busby SJ, Robinson C. Escherichia coli “TatExpress” strains super‐secrete human growth hormone into the bacterial periplasm by the Tat pathway. Biotechnology and bioengineering. 2017;114(12):2828-36.
33. Meyer AJ, Segall-Shapiro TH, Glassey E, Zhang J, Voigt CA. Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nature chemical biology. 2019;15(2):196-204.