Design of fluorescence nano biosensor for early detection of colorectal cancer using APC probe in the presence of MWCNT

Document Type : Original Research

Authors

1 گروه زیست شناسی، دانشکده علوم زیستی، واحد تهران شمال. دانشگاه آزاد اسلامی، تهران، ایران

2 گروه میکروبیولوژی، دانشکده علوم زیستی، واحد تهران شمال. دانشگاه آزاد اسلامی، تهران، ایران.

3 گروه زیست شناسی واحد ورامین پیشوا. دانشگاه آزاد اسلامی واحد پیشوا، ورامین، ایران

4 مرکز تحقیقات میکروبیولوژی کاربردی، انستیتو سیستم بیولوژی و مسمومیت ها، دانشگاه علوم پزشکی بقیه الله (عج) تهران، ایران

5 گروه زیست شناسی، دانشکده علوم زیستی، واحد تهران شمال. دانشگاه آزاد اسلامی، تهران، ایران.

Abstract
APC gene in ctDNA has been proposed as a potential biomarker for cancer diagnosis. A biosensor based on a multi-walled carbon nanotube (MWCNT) and DNA probe with fluorophore FAM (6-carboxyfluorescein) for detection of APC gene in ctDNA was developed to identify patients with colorectal cancer (CRC).

This method was designed based on the adsorption and immobilization of FAM-labeled single-stranded DNA (ssDNA) on MWCNT, which leads to the quenching of FAM fluorescence emission. By adding its cDNA could release single-stranded DNA probe (ssDNA) from the MWCNT surface and a double-stranded DNA (dsDNA) was formed. It led to the return of FAM fluorescence emission. While in the case of non-complementary DNA the corresponding dsDNA was not formed and therefore we did not have the return of FAM fluorescence emission. The results of this study showed that the biosensor based on carbon nanotubes can be used as a high-sensitivity method for the early detection of CRC.

Keywords

Subjects


1. Mahasneh, A., Al-Shaheri, F., & Jamal, E. (2017). Molecular biomarkers for an early diagnosis, effective treatment and prognosis of colorectal cancer: Current updates. Experimental and molecular pathology, 102(3), 475-483.
2. Singh, M. P., Rai, S., Suyal, S., Singh, S. K., Singh, N. K., Agarwal, A., & Srivastava, S. (2017). Genetic and epigenetic markers in colorectal cancer screening: recent advances. Expert review of molecular diagnostics, 17(7), 665-685.
3. Nelson, S., & Näthke, I. S. (2013). Interactions and functions of the adenomatous polyposis coli (APC) protein at a glance.
.4 Gaikwad, P. S., & Banerjee, R. (2018). Advances in point-of-care diagnostic devices in cancers. Analyst, 143(6), 1326-1348.
.5 Half, E., Bercovich, D., & Rozen, P. (2009). Familial adenomatous polyposis. Orphanet journal of rare diseases, 4(1), 22.
6. Kinzler KW, Nilbert MC, Su LK. Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, Mckechnie D et al. Identification of FAP locus genes from Chromosome 5q21. Science. 1991;253:661–5.
7. Senda T, Iizuka-Kogo A. Onouchi T and Shimomura A. Med Mol Morphol. 2007;40:68–81.
8. Huang D, Du X. Crosstalk between tumor cells and microenvironment via Wnt pathway in colorectal cancer dissemination. World J Gastroenterol. 2008;14(12):1823–7.
9. Yamulla RJ, Kane EG, Moody AE, Politi KA, Lock NE, Foley AV, Roberts DM. Testing models of the APC tumor suppressor/β-catenin interaction reshapes our view of the destruction complex in Wnt signaling. Genetics. 2014;197(4):1285–302.
10. Galiatsatos P, Foulkes D. Familial adenomatous polyposis. Am J Gastroenterol. 2006;101:385–98.
11. Matveeva, M. Y., Kashina, E. V., Reshetnikov, V. V., Bryzgalov, L. O., Antontseva, E. V., Bondar, N. P., & Merkulova, T. I. (2016). Regulatory single nucleotide polymorphisms (rSNPs) at the promoters 1A and 1B of the human APC gene. BMC genetics, 17(3), 154.
12. Feng, M., Fang, X., Yang, Q., Ouyang, G., Chen, D., Ma, X., ... & Xie, W. (2014). Association between the APC gene D1822V variant and the genetic susceptibility of colorectal cancer. Oncology letters, 8(1), 139-144.
13. Abdel-Malak, C., Darwish, H., Elsaid, A., El-Tarapely, F., & Elshazli, R. (2016). Association of APC I1307K and E1317Q polymorphisms with colorectal cancer among Egyptian subjects. Familial cancer, 15(1), 49-56.
14. Nagase H, Nakamura Y. Mutations of the APC (adenomatous polyposis coli) gene. Hum Mutat. 1993;2(6):425–34.
15. Nieuwenhuis MH, Vasen HF. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol. 2007;61(2):153–61.
16. Zhang, S., Qin, H., Lv, W., Luo, S., Wang, J., Fu, C., ... & Wu, L. (2016). Novel and reported APC germline mutations in Chinese patients with familial adenomatous polyposis. Gene, 577(2), 187-192.
.17Gupta, S., Murthy, C. N., & Prabha, C. R. (2018). Recent advances in carbon nanotube based electrochemical biosensors. International journal of biological macromolecules, 108, 687-703
18.Touhami, A. (2014). Biosensors and nanobiosensors: design and applications. Nanomedicine, 15, 374-403.
.19 Rajasekar M. Recent Trends in Rhodamine derivatives as fluorescent probes for biomaterial applications. Journal of Molecular Structure. 2021;1235:130232.
20. Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. TrAC Trends in Analytical Chemistry. 2019;119:115609.
21. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21(4):1109.
22. Nawrot W, Drzozga K, Baluta S, Cabaj J, Malecha K. A fluorescent biosensors for detection vital body fluids’ agents. Sensors. 2018;18(8):2357.
23. Girigoswami K, Akhtar N. Nanobiosensors and fluorescence based biosensors: An overview. International Journal of Nano Dimension. 2019;10(1):1-17.
24. Darestani-Farahani M, Faridbod F, Ganjali MR. A sensitive fluorometric DNA nanobiosensor based on a new fluorophore for tumor suppressor gene detection. Talanta 2018;190:140-6.
25. Pan, S., Xu, J., Shu, Y., Wang, F., Xia, W., Ding, Q., ... & Lu, S. (2010). Double recognition of oligonucleotide and protein in the detection of DNA methylation with surface plasmon resonance biosensors. Biosensors and Bioelectronics, 26(2), 850-853.
26. Zou, H., Harrington, J., Rego, R. L., & Ahlquist, D. A. (2007). A novel method to capture methylated human DNA from stool: implications for colorectal cancer screening. Clinical Chemistry, 53(9), 1646-1651.
.27Darestani-Farahani M, Faridbod F, Ganjali MR. A sensitive fluorometric DNA nanobiosensor based on a new fluorophore for tumor suppressor gene detection. Talanta 2018;190:140-6.
.28Sun, Z.; Li, J.; Tong, Y.; Zhao, L.; Zhou, X.; Li, H.;Wang, C.; Du, L.; Jiang, Y. Ratiometric Fluorescence Detection of Colorectal Cancer-Associated Exosomal miR-92a-3p with DSN-Assisted Signal Amplification by a MWCNTs@Au NCs Nanoplatform. Biosensors 2022, 12, 533. https:// doi.org/10.3390/bios12070533
29. Huang, J.; Shangguan, J.F.; Guo, Q.P.; Ma,W.J.;Wang, H.Z.; Jia, R.C.; Ye, Z.; He, X.X.;Wang, K.M. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst 2019, 144, 4917–4924.
30. Zhou, D.S.; Liu, X.T.; Liu, X.T.; Xu, Y.T.; Chen, R.Q.; Lin, C.; Guo, L.Q.; Fu, F.F. Ratiometric fluorescent biosensor for microRNAs imaging in living cells. Sens. Actuator B-Chem. 2020, 322, 128632.
31. Wang, S.; Wang, L.; Xu, X.W.; Li, X.; Jiang, W. MnO2 nanosheet-mediated ratiometric fluorescence biosensor for MicroRNA detection and imaging in living cells. Anal. Chim. Acta 2019, 1063, 152–158.
32. Ji, D.Y.; Mou, X.; Kwok, C.K. Label-free and ratiometric detection of microRNA based on target-induced catalytic hairpin assembly and two fluorescent dyes. Anal. Methods 2019, 11, 4808–4813.
33. Jiang, Y.T.; Ma, X.Y.; Shao, X.J.;Wang, M.Y.; Jiang, Y.; Miao, P. Chameleon silver nanoclusters for ratiometric sensing of miRNA. Sens. Actuator B-Chem. 2019, 297, 126788.
34. Wang, Z.Z.; Xue, Z.Q.; Hao, X.L.; Miao, C.F.; Zhang, J.Z.; Zheng, Y.J.; Zheng, Z.F.; Lin, X.H.; Weng, S.H. Ratiometric fluorescence sensor based on carbon dots as internal reference signal and T7 exonuclease-assisted signal amplification strategy for microRNA-21 detection. Anal. Chim. Acta 2020, 1103, 212–219.
35. Zhang,W.Y.; Hao,W.H.; Liu, X.T.; Sun, X.R.; Yan, J.L.;Wang, Y.C. Visual detection of miRNAs using enzyme-free amplification reactions and ratiometric fluorescent probes. Talanta 2020, 219, 121332.
36. Wang, Y.T.; Wu, N.; Guo, F.N.; Gao, R.X.; Yang, T.; Wang, J.H. g-C3N4 nanosheet-based ratiometric fluorescent probes for the amplification and imaging of miRNA in living cells. J. Mat. Chem. B 2019, 7, 7566–7573.
37. Lin, X.Y.; Zhang, C.; Huang, Y.S.; Zhu, Z.; Chen, X.; Yang, C.J. Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification. Chem. Commun. 2013, 49, 7243–7245.
38. Sun, C.H.; Rong, Y.; Yang, Z.P.; She, D.; Gong, M.W. Construction of Dual-Target Recognition-Based Specific MicroRNA Detection Method for Acute Pancreatitis Analysis. Appl. Biochem. Biotechnol. 2022, 194, 3136–3144.
39. Guo, S.; Yang, F.; Zhang, Y.L.; Ning, Y.; Yao, Q.F.; Zhang, G.J. Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease. Anal. Methods 2014, 6, 3598–3603.
40. Sun, Y.J.; Wang, C.C.; Tang, L.N.; Zhang, Y.L.; Zhang, G.J. Magnetic-enhanced fluorescence sensing of tumor miRNA by combination of MNPs@PDA with duplex specific nuclease. RSC Adv. 2021, 11, 2968–2975. Biosensors 2022, 12, 533 14 of 14
41. Shen,W.; Yeo, K.H.; Gao, Z.Q. A simple and highly sensitive fluorescence assay for microRNAs. Analyst 2015, 140, 1932–1938.
42. Yao, G.D.; Xiao, Z.Y.; Yu, S.; Yao, K.; Liu, D.H.; Chen, K.X.; Wei, Z.M.; Li, Y.J.; Sun, F.F. Tetrahedral structure supported two stages DSN-assisted amplification strategy for sensitive detection of lung cancer related MicroRNA. Microchem. J. 2022, 174, 107035.