1. Vlaardingerbroek, M.T. and J.A. Boer, Magnetic resonance imaging: theory and practice2013: Springer Science & Business Media.
2. Ibrahim, M.A., B. Hazhirkarzar, and A.B. Dublin, Gadolinium Magnetic Resonance Imaging. 2018.
3. Carretta, P. and A. Lascialfari, NMR-MRI, μSR and Mössbauer Spectroscopies in Molecular Magnets2007: Springer Science & Business Media.
4. Rioux, J., Quantitative Magnetic Resonance Imaging of Cellular Density With TurboSPI. 2012.
5. Cheng, W., et al., Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis. Journal of healthcare engineering, 2013. 4(1): p. 23-46.
6. Shokrollahi, H., Contrast agents for MRI. Materials Science and Engineering: C, 2013. 33(8): p. 4485-4497.
7. Jang, W.-D., et al., Bioinspired application of dendrimers: from bio-mimicry to biomedical applications. Progress in Polymer Science, 2009. 34(1): p. 1-23.
8. Park, J.Y., et al., Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T 1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T 1 MR images. ACS nano, 2009. 3(11): p. 3663-3669.
9. Shen, T., Superparamagnetic contrast agents for magnetic resonance imaging, 1994, Massachusetts Institute of Technology.
10. Rahman, M., Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine. Nanotheranostics, 2023. 7(4): p. 424.
11. Asl, H.M., Applications of nanoparticles in magnetic resonance imaging: a comprehensive review. Asian Journal of Pharmaceutics (AJP), 2017. 11(01).
12. Lawaczeck, R., M. Menzel, and H. Pietsch, Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Applied organometallic chemistry, 2004. 18(10): p. 506-513.
13. Ferrucci, J. and D. Stark, Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR. American journal of roentgenology, 1990. 155(5): p. 943-950.
14. Wang, Y.-X.J., Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quantitative imaging in medicine and surgery, 2011. 1(1): p. 35.
15. Mittal, A., I. Roy, and S. Gandhi, Magnetic Nanoparticles: An Overview for Biomedical Applications. Magnetochemistry, 2022. 8(9): p. 107.
16. Casula, M.F., et al., Design of water-based ferrofluids as contrast agents for magnetic resonance imaging. Journal of colloid and interface science, 2011. 357(1): p. 50-55.
17. Dulińska-Litewka, J., et al., Superparamagnetic iron oxide nanoparticles—Current and prospective medical applications. Materials, 2019. 12(4): p. 617.
18. Ravichandran, M. and S. Velumani, Manganese ferrite nanocubes as an MRI contrast agent. Materials Research Express, 2020. 7(1): p. 016107.
19. Yang, L., et al., Sensitive contrast-enhanced magnetic resonance imaging of orthotopic and metastatic hepatic tumors by ultralow doses of zinc ferrite octapods. Chemistry of Materials, 2019. 31(4): p. 1381-1390.
20. Kotronen, A., et al., Increased coagulation factor VIII, IX, XI and XII activities in non‐alcoholic fatty liver disease. Liver international, 2011. 31(2): p. 176-183.
21. Arsalani, N., H. Fattahi, and M. Nazarpoor, Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett, 2010. 4(6): p. 329-38.
22. Zheng, J., et al., One-pot synthesis of CuFe 2 O 4 magnetic nanocrystal clusters for highly specific separation of histidine-rich proteins. Journal of materials chemistry B, 2014. 2(37): p. 6207-6214.
23. Caravan, P., et al., Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chemical reviews, 1999. 99(9): p. 2293-2352.
24. Dias, M.H.M. and P.C. Lauterbur, Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleen. Magnetic resonance in medicine, 1986. 3(2): p. 328-330.
25. Semelka, R.C. and T.K. Helmberger, Contrast agents for MR imaging of the liver. Radiology, 2001. 218(1): p. 27-38.
26. De, M., et al., Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Advanced Drug Delivery Reviews, 2011. 63(14-15): p. 1282-1299.
27. Kim, J., Y. Piao, and T. Hyeon, Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews, 2009. 38(2): p. 372-390.
28. Laurent, S., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 2008. 108(6): p. 2064-2110.
29. Lee, J.-H., et al., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature medicine, 2007. 13(1): p. 95-99.
30. Usreg, H.S., A. Husein, and F.M. Zakki, UJI SITOTOKSIK TERHADAP SINTESIS DAN KARAKTERISASI MAGNETIK NANOPARTIKEL CuFe2O4 YANG DILINGKUPI BOVINE SERUM ALBUMIN (BSA). Sci. J. Chem. Res., 2019. 4(1): p. 7.
31. Talaei, M., S. Hassanzadeh-Tabrizi, and A. Saffar-Teluri, Synthesis of mesoporous CuFe2O4@ SiO2 core-shell nanocomposite for simultaneous drug release and hyperthermia applications. Ceramics International, 2021. 47(21): p. 30287-30297.
32. Kombaiah, K., et al., Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies. Journal of Physics and Chemistry of Solids, 2018. 115: p. 162-171.
33. Kwak, N.W., et al., In situ synthesis of supported metal nanocatalysts through heterogeneous doping. Nature Communications, 2018. 9(1): p. 4829.
34. Rohrer, M., et al., Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investigative radiology, 2005. 40(11): p. 715-724.
35. Wang, Z., et al., Controlled synthesis of MnFe 2 O 4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T 1/T 2-weighted MRI contrast agents. Journal of Materials Chemistry B, 2014. 2(29): p. 4748-4753.
36. Joshi, H.M., Multifunctional metal ferrite nanoparticles for MR imaging applications. Journal of nanoparticle research, 2013. 15: p. 1-19.