L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?,” IRBM, vol. 35, no. 5, pp. 271–282, 2014.
[2] K. Qin, W. Huang, T. Zhang, and S. Tang, “Machine learning and deep learning for blood pressure prediction : a methodological review from multiple perspectives,” in Artificial Intelligence Review, Springer, 2022, pp. 8095–8196.
[3] س. س. موسوی, “طراحی و ساخت هولتر فشارخون مبتنی بر تلفن همراه با به کارگیری سیگنال های الکتروکاردیوگرام و فوتوپلتیسموگرافی، ” زنجان، 1397.
[4] R. Mukkamala, J. Hahn, and A. Chandrasekhar, “Photoplethysmography in noninvasive blood pressure monitoring,” in Photoplethysmography Technology, Signal Analysis and Applications, Academic Press, 2022, pp. 359–400.
[5] X. DUAN, “The Analysis of Photoplethysmography Signal: Investigating the Current Methods of Cuff-Less Blood Pressure Monitoring,” Vrije Universiteit Brussel & Universiteit Gent, 2021.
[6] C. Landry, S. Peterson, and A. Arami, “Nonlinear Dynamic Modelling of the Blood Pressure Waveform: Towards an Accurate Cuffless Monitoring System,” IEEE Sens J, vol. 20, pp. 5368–5378, 2020.
[7] م. شهابی ، و. نفیسی، “تخمین بدون کاف فشارخون مبتنی بر ویژگیهای زمانی سیگنال نبض” ، پردازش علائم وداده ها، صفحات 103-113، 1397.
[8] S. S. Mousavi, M. Charmi, M. Firouzmand, and M. Hemmati, “Design and Manufacturing a Mobile-Based Ambulatory Monitoring of Blood Pressure Using Electrocardiogram and Photoplethysmography Signals,” University of Zanjan, Zanjan, 2018.
[9] S. Mahmud et al., “A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals,” sensors, vol. 22, 2022.
[10] D. U. Jeong and K. M. Lim, “Combined deep CNN – LSTM network based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG PPG features,” Sci Rep, no. 0123456789, pp. 1–8, 2021, doi: 10.1038/s41598-021-92997-0.
[11] Y. H. Li, L. N. Harfiya, K. Purwandari, and Y. Der Lin, “Real-time cuffless continuous blood pressure estimation using deep learning model,” Sensors (Switzerland), vol. 20, no. 19, pp. 1–19, 2020, doi: 10.3390/s20195606.
[12] S. González, W. Hsieh, and T. P. Chen, “A benchmark for machine- learning based non-invasive blood pressure estimation using photoplethysmogram,” Sci. Rep., vol. 10, no. 149, pp. 1–16, 2023.
[13] N. Ibtehaz et al., “PPG2ABP : Translating Photoplethysmogram ( PPG ) Signals to Arterial Blood Pressure ( ABP ) Waveforms,” Bioengineering, vol. 9, no. 11, 2022.
[14] S. Lee, M. Lee, and J. Y. Sim, “DSE-NN: Deeply Supervised Efficient Neural Network for Real-Time Remote Photoplethysmography,” Bioengineering, vol. 10, no. 12, 2023.
[15] S. Ali, J. Li, Y. Pei, and K. U. Rehman, “A Multi-module 3D U-Net Learning Architecture for Brain Tumor Segmentation A Multi-module 3D U-Net Learning Architecture for Brain Tumor,” in Data Mining and Big Data, Springer, 2022, pp. 57–69.
[16] Y. Li, K. Li, and X. Wang, “Deeply-Supervised CNN Model for Action Recognition with Trainable Feature Aggregation,” in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence(IJCAI), 2017, pp. 807–813.
[17] G. Dheeru and D.Casey, “UCI Machine Learning Repository.”
[18] M. Kachuee, M.M. Kiani, H. Mohammadzade, and M. Shaban, “Cuffless blood pressure estimation algorithms for continuous health-care monitoring,” IEEE Trans. Biomed. Eng., vol. 64, pp. 859–869, 2016.
[19] D. P. Kingma and L. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference for Learning Representations, San Diego, 2015.
[20] P. Lv2, J. Wang, X. Zhang, and Ch. Shi3, “Deep supervision and atrous inception based U Net combining CRF for automatic liver segmentation from CT,” Sci. Rep., vol. 12, no. 16995, 2022.
[21] J. Cheng, Y. Xu, R. Song, Y. Liu, Ch. Li, and X. Chen, “Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks,” Comput. Biol. Med., vol. 138, 2021.
[22] م. قنواتی, س. ف. مولایی زاده, و م. نویدی, “یک روش شخصیسازی شده برای تخمین فشارخون بدون کاف از یک سنسور PPG مبتنی بر یادگیری انتقالی عمیق” سیامین کنفرانس ملی و هشتمین کنفرانس بینالمللی مهندسی زیست پزشکی ایران, تهران, 1402.
[23] N. Hasanzadeh and M.M. Ahmadi, “Blood pressure estimation using photoplethysmogram signal and its morphological features,” IEEE Sens. J., vol. 20, no. 8, pp. 4300–4310, 2019.
[24] S. Bose S and A. Kandaswamy, “Sparse characterization of PPG based on K- SVD for beat-to-beat blood pressure prediction,” Biomedical Research, vol. 29, no. 4, pp. 835–843, 2018.
[25] S. S. Mousavi et al., “Blood pressure estimation from appropriate and inappropriate PPG signals using a whole-based method,” Biomed Signal Process Control, vol. 47, pp. 196–206, 2019.
[26] S. Baek et al., “End-to-End Blood Pressure Prediction via Fully Convolutional Networks,” IEEE Access, vol. 7, pp. 185458–185468, 2019.
[27] M. Panwar, A. Gautam, D. Biswas, and A. Acharyya, “PP-Net: a deep learning framework for PPG-based blood pressure and heart rate estimation,” IEEE Sens. J., vol. 20, no. 17, pp. 10000–10011, 2020.
[28] M. Rong and K. Li, “A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography,” Biomed Signal Process Control, vol. 68, p. 102772, 2021, vol. 68, 2021.
[29] Y. Qiu et al., “Blood pressure estimation based on composite neural network and graphics information,” Biomed. Signal Process. Control, vol. 70, no. 103001, 2021.
[30] A. B. Malayeri and M. B. Khodabakhshi, “Concatenated convolutional neural network model for cufless blood pressure estimation using fuzzy recurrence properties of PPG signals,” Sci. Rep., vol. 12, no. 6633, 2022.
[31] Y-C. Hsu, Y-H. Li, C-C. Chang, and L. N. Harfiya, “Generalized deep neural network model for cuffless blood pressure estimation with photoplethysmogram signal only,” Sensors, vol. 20, no. 19, 2020.
[32] Z. Li and W. He, “A continuous blood pressure estimation method using photoplethysmography by GRNNbased model,” Sensors, vol. 21, no. 21, 2021.
[33] L. N. Harfya, C-C. Chang, and Y-H. Li, “Continuous blood pressure estimation using exclusively photopletysmography by LSTM-based signal-to-signal translation,” Sensors, vol. 21, no. 9, 2021.