الکتروریسی نانوکامپوزیت پلی‌یورتان تقویت شده با اکسید گرافن، نانوذرات سلنیم و عصاره گیاه حنا برای کاربرد زخم‌پوش

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشگاه علم و صنعت ایران

2 دانشگاه تربیت مدرس

چکیده
جایگزینی بافت‌ها و اندام‌هایی که به دلیل ضربه یا بیماری‌های مختلف دچار اختلال شدند، اجتناب ناپذیر است. یکی از روش‌هایی که می‌توان با بهینه‌سازی آن، به سرعت بازسازی زخم‌ها کمک نمود، ارتقای فناوری زخم‌پوش‌هاست. در تحقیق حاضر، با بهره‌گیری از خواص نانوالیاف‌های پلی‌یورتان و بهبود خواص آنها با افزودنی‌هایی شامل اکسید گرافن، نانو ذرات سلنیم و عصاره‌ گیاه حنا، ارتقای عملکرد زخم‌پوش‌ هدف‌گیری شد. پس از یافتن غلظت بهینه متناسب با دستگاه الکتروریسی، از محلول DMSO حاوی 12 درصد وزنی پلی‌یورتان برای تولید نانوالیاف‌ زخم‌پوش استفاده شد. تصاویر حاصل از میکروسکوپ الکترونی روبشی (SEM) تولید داربست‌هایی یکنواخت متشکل از نانوالیاف پلی‌یورتان را تایید کرد. برای بررسی عملکرد پارچه تولیدی به عنوان زخم‌پوش، خواص ضدباکتریایی و خواص مکانیکی پارچه مطالعه شد. برای نمونه کامپوزیتی PU-GO-Se-Henna فعالیت ضدباکتریایی نسبت به دو باکتری S.aureus و E. coli به ترتیب برابر 26/3 و 85/2 بود که نشان‌دهنده‌ی ویژگی ضدباکتریایی بسیار جذاب این نمونه است. این نمونه در آزمون کشش به استحکام پارگی MPa 92 رسید که نسبت به نمونه پلی‌یورتان خالص حدود 104 درصد افزایش استحکام نشان داد.

کلیدواژه‌ها

موضوعات


1. Zhong, S.P., Zhang, Y.Z., Lim, C.T. (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdisciplinary Review Nanomedicine Nanobiotechnology. 2, 510–525.
2. Kanjwal, M.A., Ghaferi A.A. (2022) Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. Sensors. 22, 8661.
3. Braghirolli, D.I., Steffens, D., Pranke, P. (2014) Electrospinning for regenerative medicine: a review of the main topics. Drug Discovery Today. 19, 743–53.
4. Rusu, L., Ardelean, L.C., Jitariu, A., Miu, C.A., Streian, C.G. (2020) An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers. 12(5), 1197.
5. Ghorbani, F., Zamanian, A., Aidun, A. (2019) Bioinspired polydopamine coating‐assisted electrospun polyurethane‐graphene oxide nanofibers for bone tissue engineering application. J Appl Polym Sci. 136(24), 47656.
6. El-Sherbiny I.M., Ali I.H. (2015) Eco-friendly Electrospun Polymeric Nanofibers-Based Nanocomposites for Wound Healing and Tissue Engineering. In: Eco-friendly Polymer Nanocomposites. Edited by Thakur, V.K., Springer, Berlin, p. 399–431.
7. Garg, T., Rath, G., Goyal, A.K. (2015) Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery. J Drug Target. 23(3), 202–221.
8. Khalili, S., Khorasani, S.N., Razavi, S.M., Hashemibeni, B., Tamayol, A. (2019) Nanofibrous Scaffolds with Biomimetic Composition for Skin Regeneration. Appl Biochem Biotechnol. 187(4), 1193–1203.
9. Davis, F.J., Mitchell, G.R. (2010) Polyurethane Based Materials with Applications in Medical Devices. In: Bio-Materials and Prototyping Applications in Medicine, Springer, Boston, p. 27–48.
10. Morales-González, M., Díaz, L.E., Dominguez-Paz, C., Valero, M.F. (2022) Insights into the Design of Polyurethane Dressings Suitable for the Stages of Skin Wound-Healing: A Systematic Review. Polymers. 14(15), 2990.
11. محمدی، عباس. صالحی، نگار. (1401) نانوالیاف آمیخته‌های پلی یورتان-پلیمرهای طبیعی برای کاربرد در زخمپوش‌های الکتروریسی‌شده. بسپارش. 12، 15-29.
12. Kim, H.J., Park, S.H. (2022) Reinforced tensile strength and wettability of nanofibrous electrospun cellulose acetate by coating with waterborne polyurethane and graphene oxide. J Eng Fiber Fabr. 17, 1-17.
13. Hong, Y. (2016) Electrospun fibrous polyurethane scaffolds in tissue engineering. In: Advances in Polyurethane Biomaterials, Elsevier, p. 543–59.
14. Akduman, C., Kumbasar, E.P.A. (2017) Electrospun Polyurethane Nanofibers. In: Aspects of Polyurethanes, Edited by: Yilmaz, F. InTech.
15. Mi, H.Y., Jing, X., Yilmaz, G., Hagerty, B.S., Enriquez, E., Turng, L.S. (2018) In situ synthesis of polyurethane scaffolds with tunable properties by controlled crosslinking of tri-block copolymer and polycaprolactone triol for tissue regeneration. Chem Eng J. 348, 786–798.
16. Jo, S.B., Erdenebileg, U., Dashnyam, K., Jin, G.Z., Cha, J.R., El-Fiqi, A., et al. (2020) Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering. J Tissue Eng. 11, 1-10.
17. Khan, U., May, P., O’Neill, A., Coleman, J.N. (2010) Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon. 48(14), 4035–4041.
18. Depan, D., Girase, B., Shah, J.S., Misra, R.D.K. (2011) Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater. 7(9), 3432–3445.
19. Raafat A. I., El-Hag Ali A. (2019) A novel Lawsonia inermis (Henna) / (hydroxyl ethyl cellulose/ polyvinyl pyrrolidone) wound dressing hydrogel: radiation synthesis, characterization and biological evaluation. Polym Bull. 76(8), 4069–4086.
20. Yousefi, I., Pakravan, M., Rahimi, H., Bahador, A., Farshadzadeh, Z., Haririan, I. (2017) An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Mater Sci Eng C. 75, 433–444.
21. Adamu, B.F., Gao, J., Jhatial, A.K., Kumelachew, D.M. (2021) A review of medicinal plant-based bioactive electrospun nano fibrous wound dressings. Mater Des. 209, 109942.
22. Homaeigohar, S., Boccaccini, A.R. (2020) Antibacterial biohybrid nanofibers for wound dressings, Acta Biomaterialia. 107, 25–49.
23. Bisht, N., Phalswal, P., Khanna, P.K. (2022) Selenium nanoparticles: a review on synthesis and biomedical applications. Mater Adv. 3(3), 1415–1431.
24. Zhang, H., Li, Z., Dai, C., Wang, P., Fan, S., Yu, B., et al. (2021) Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX. Environ Res. 194, 110630.
25. Biswas, D.P., O'Brien-Simpson, N.M., Reynolds, E.C., O'Connor, A.J., Tran, P.A. (2018) Comparative study of novel in situ decorated porous chitosan-selenium scaffolds and porous chitosan-silver scaffolds towards antimicrobial wound dressing application. Journal of Colloid and Interface Science. 515, 78-91.
26. Ramya, S., Shanmugasundaram, T., Balagurunathan, R. (2015) Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. Journal of Trace Elements in Medicine and Biology. 32, 30-39.
27. Tiwari, B.K. (2015) Ultrasound: A clean, green extraction technology. TrAC Trends Anal Chem. 71, 100–109.
28. Chemat, F., Khan, M.K. (2011) Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem. 18(4), 813–835.
29. Pant, H.R., et al. (2012) Bimodal fiber diameter distributed graphene oxide/nylon-6
composite nanofibrous mats via electrospinning. Colloids and Surfaces A: Physicochemical
and Engineering Aspects. 407, 121–125.
30. Liu, X., Lin, T., Fang, J., Yao, G., Zhao, H., Dodson, M., Wang, X. (2010) In vivo wound healing and antibacterial performances of electrospun nanofibre membranes. Journal of biomedical materials research Part A. 94, 499–508.
31. Pant, B., Park, M., Jang, R., Choi, W., Kim, H., Park, S. (2017) Synthesis, characterization, and antibacterial performance of Ag-modified graphene oxide reinforced electrospun polyurethane nanofibers. Carbon Letters. 23, 17–21
32. Semwal, R.B., Semwal, D.K., Combrinck, S., Cartwright-Jones, C., Viljoen, A. (2014) Lawsonia inermis L. (henna): Ethnobotanical, phytochemical and pharmacological aspects. Journal of Ethnopharmacology. 155, 80–103.
33. Abulyazid, I., Mahdy, E.M.E., Ahmed, R.M. (2013) Biochemical study for the
effect of henna (Lawsonia inermis) on Escherichia coli. Arabian Journal of Chemistry. 6, 265–273.
34. Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., Adam, V. (2017) Perspective of selenium nanoparticles as a nutrition supplement. Nutrition. 33, 83–90.
35. Wang, C., Zhang, Y., Lin, L., Ding, L., Li, J., Lu, R., et al. (2015) Thermal, mechanical, and morphological properties of functionalized graphene‐reinforced bio‐based polyurethane nanocomposites. Eur J Lipid Sci Technol. 117(12), 1940–1946.
36. Wan, T., Chen, D. (2018) Mechanical enhancement of self-healing waterborne polyurethane by graphene oxide. Prog Org Coatings. 121, 73–79.