Phytochemical based nano drug delivery systems for cancer treatment: present and future

Document Type : Analytic Review

Authors

1 Faculty of medicinal plants, Amol University of Special Modern Technologies, Amol, Iran.

2 Faculty of medicinal plants, Amol University of Special Modern Technologies, Amol, Iran

3 Department of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.

Abstract
Cancer is one of the leading causes of mortality worldwide. this multifactorial disease characterized by complex molecular landscape and altered cell pathways that results in an abnormal cell growth. One of the recent strategies to combat cancer is application of phytochemicals. phytochemicals including phenolics, alkaloids, terpenoids, carotenoids, phytosterol, saponin and organosulfur compounds which play important roles in the prevention and treatment of cancer. The pharmacological use of phytochemicals compounds is frequently limited by their low bioavailability and solubility as they are mainly lipophilic compounds. The nanotechnological approach improves bioavailability, and inhences solubility. In the present review we aim to summarize challenges of phytochemical compounds in cancer treatment and the status of phytochemical based nanoformulations in improving the therapeutic response.

Keywords

Subjects


1) Zare M, Norouzi Roshan Z, Assadpour E, Jafari SM. (2021) Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Crit Rev Food Sci Nutr CRIT REV FOOD SCI. 61, 522- 534.
2) White MC, Peipins LA, Watson M, Trivers KF, Holman DM, Rodriguez JL. (2013) Cancer prevention for the next generation. J Adolesc Health. 52, 1-7.
3) Mbemi A, Khanna S, Njiki S, Yedjou CG, Tchounwou PB. (2020) Impact of gene–environment interactions on cancer development. Int. J. Environ. Res. Public Health. 17, 8089.
4) Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. (2018) Biotech adv. 36, 506-20.
5) (a) Tanaka T. (1997) Effect of diet on human carcinogenesis. Crit Rev Oncol./Hematol. 25, 73-95. (b) Solanki R, Jodha B, Prabina K.E, Aggarwal N, Patel S. (2022). Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: A review. J. Drug Deliv. Technol. 77, 103832.
6) Rajendran R, Radhai R, Maithili N, Balakumar C.(2011) Production of herbal-based nanoparticles for medical textilesInt. J. Nanosci. 209-212. (b) Zafar S, Arshad MF, Khan H, Menahil R, Iqbal L, Prabhavathi SJ, Kumar MS, Omar AF, Shaheen T. (2024) Nanoformulations of plant essential oils for managing mycotoxins producing fungi: An overview. Biocatal. Agric. Biotechnol. 60, 103314. (c) Kumar G, Virmani T, Sharma A, Pathak K. (2023) Codelivery of phytochemicals with conventional anticancer drugs in form of nanocarriers. Pharmaceutics. 15(3), 889-918.
7) Monika T, Singh K, Renu Khedkar. (2020). "Phytochemicals: Extraction process, safety assessment, toxicological evaluations, and regulatory issues." Functional and preservative properties of phytochemicals. Academic Press, pp: 341-361.
8) Ncube NS, Afolayan AJ, Okoh AI. (2008) Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr. J. Biotechnol. 7(12).
9) Elekofehinti OO, Iwaloye O, Olawale F, Ariyo EO. (2021) Saponins in cancer treatment: Current progress and future prospects. Pathophysiol. 28, 250-72.
10) Faulks RM, Southon S. (2005) Challenges to understanding and measuring carotenoid bioavailability. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 1740, 95-100.
11) Leitzmann C. (2016) Characteristics and health benefits of phytochemicals. Complementary Medicine Res. 23, 69-74.
12) Lovkova MY, Buzuk GN, Sokolova SM, Kliment'eva NI. (2001) Chemical features of medicinal plants. Appl. Biochem. Microbiol. 37, 229-37.
13) Lingli Q. (2019) Advance on delivery nanocarriers of piperine: Nanoparticles. InE3S Web of Conferences (Vol. 131, p. 01002). EDP Sciences.
14) (a) Potočnjak I., Gobin I., Domitrović R. Carvacrol induces cytotoxicity in human cervical cancer cells but causes cisplatin resistance: Involvement of MEK-ERK activation. Phytotherapy Research. 2018;32:1090–1097. (b) Kobayashi Y., Sato H., Yorita M., Nakayama H., Miyazato H., Sugimoto K., Jippo T. Inhibitory effects of geranium essential oil and its major component, citronellol, on degranulation and cytokine production by mast cells. Bioscience, Biotechnology, and Biochemistry. 2016;80:1172–1178. (c) Guimarães A.C., Meireles L.M., Lemos M.F., Guimarães M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24:2471. (d) Wang C.-Y., Chen Y.-W., Hou C.-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. International Journal of Food Properties. 2019;22:230–238.
15) Ludwiczuk A, Skalicka-Woźniak K, Georgiev MI (2017) Terpenoids. In: Pharmacognosy. Elsevier, pp 233–266.
16) Zheng X, Giuliano G, Al-Babili S. (2020) Carotenoid biofortification in crop plants: citius, altius, fortius. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 1865(11):158664.
17) Albuquerque, T.G., Nunes, M.A., Bessada, S.M., Costa, H.S. and Oliveira, M.B.P., (2020). Biologically active and health promoting food components of nuts, oilseeds, fruits, vegetables, cereals, and legumes. Chem analysis food 609-656.
18) Güçlü-Üstündağ Ö, Mazza G. (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 47(3), 231-58.
19) (a) Goncharov, Nikolay V., et al. (2021) "Organosulfur compounds as nutraceuticals." Nutraceuticals. Academic Press, 911-924. (b) Lee DY, Li H, Lim HJ et al (2012) Anti-inflammatory activity of sulfur-containing compounds from garlic. J Med Food 15:992–999.
20) (a) Kumari K, Augusti KT (2002) Anti-diabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian J Exp Biol 40(9):1005–1009. (b) Lai K-C, Kuo C-L, Ho H-C et al (2012) Diallyl sulfide, diallyl disulfide and diallyl trisulfide affect drug resistant gene expression in colo 205 human colon cancer cells in vitro and in vivo. Phytomedicine 19:625–630. (c) Chan JYY, Yuen ACY, Chan RYK, Chan SW (2013) A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother Res 27(5):637–646
21) (a) Lanzotti V, Scala F, Bonanomi G (2014) Compounds from Allium species with cytotoxic and anti-microbial activity. Phytochem Rev 13:769–791. (b) Liao X, Li B, Zou R, Xie S, Yuan B (2016) Antibiotic sulfanilamide biodegradation by acclimated microbial populations. Appl Microbiol Biotechnol 100(5):2439–2447. (c) Yin M, Cheng W (2003) Antioxidant and anti-microbial effects of four garlic-derived organosulfur compounds in ground beef. Meat Sci 63:23–28.
22) Epriliati I, Ginjom IR. (2012) Bioavailability of phytochemicals. Phytochemicals—A Global Perspective of Their Role in Nutrition and Health. 21:401-28.
23) Al-Ishaq RK, Overy AJ, Büsselberg D. (2020) Phytochemicals and gastrointestinal cancer: cellular mechanisms and effects to change cancer progression. Biomolecules. 10, 105.
24) Brand W, Boersma MG, Bik H, Hoek-van Den Hil EF, Vervoort J, Barron D, Meinl W, Glatt H, Williamson G, Van Bladeren PJ, Rietjens IM. (2010) Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples. Drug Metab Dispos. 38, 617-25.
25) Lampe JW, Chang JL. (2017) Interindividual differences in phytochemical metabolism and disposition. Semin cancer boil. 17, 347-353.
26) Carbonell‐Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frígola A. (2014) Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2.155-71.
27) McClements DJ, Öztürk B. (2021) Utilization of nanotechnology to improve the application and bioavailability of phytochemicals derived from waste streams. J Agricultural Food Chem. 70, 6884-900.
28) Mohapatra P, Singh P, Singh D, Sahoo S, Sahoo SK. Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective. OpenNano. 2022 Jul 7:100055.
29) Pezzani R, Salehi B, Vitalini S, Iriti M, Zuñiga FA, Sharifi-Rad J, Martorell M, Martins N. (2019) Synergistic effects of plant derivatives and conventional chemotherapeutic agents: an update on the cancer perspective. Medicina. 17;55(4):110.
30) (a) More MP, Pardeshi SR, Pardeshi CV, Sonawane GA, Shinde MN, Deshmukh PK, Naik JB, Kulkarni AD. (2021) Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. Med Drug Discov. 10:100082. (b) HemaIswarya S, Doble M. Potential synergism of natural products in the treatment of cancer. Phytother Res Int J Devot Pharm Toxicol Eval Nat Prod Deriv. 2006;20(4): 239–49. (b) Țigu AB, Toma V-A, Moț AC, Jurj A, Moldovan CS, Fischer-Fodor E, et al. The synergistic antitumor effect of 5-fluorouracil combined with Allicin against lung and colorectal
carcinoma cells. Molecules. 2020;25(8):1947. (c) Muthusamy T, Yadav LR, Ramalingam S, Ramachandran I. Synergistic effect of 5- fluorouracil combined with Naringin in MDA-MB-231 human breast Cancer cells. Int Res J Oncol. 2020:13–27.
31) Gupta D, Lis CG, Birdsall TC, Grutsch JF. (2005) The use of dietary supplements in a community hospital comprehensive cancer center: implications for conventional cancer care. Supportive care in cancer. (11):912-9.
32) Hassannia B, Logie E, Vandenabeele P, Berghe TV, Berghe WV. Withaferin A (2020) From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem Pharmacol . 173:113602.
33) Mohapatra P, Singh P, Sahoo SK. (2020) Phytonanomedicine: a novel avenue to treat recurrent cancer by targeting cancer stem cells. Drug Discovery Today. 25, 1307-21.
34) Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, Ditta A, Rosli Z, Rajpar MN, Nazre M. (2022) Exploring the phytochemicals and anti-cancer potential of the members of fabaceae family: A comprehensive review. Molecules. 27, 3863.
35) Arora, I., Sharma, M. and Tollefsbol, T.O., (2019) Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int J Mol Sci. 20, 4567.
36) Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I, Calina D. (2022) Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 22, 1-20.
37) Mondal A, Gandhi A, Fimognari C, Atanasov AG, Bishayee A. (2019) Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur J Pharmacol.172472.
38) Thoppil RJ, Bishayee A. (2011) Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J. Hepatol.. 3, 228.
39) Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT. (2012) Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs. 21, 1801-18.
40) Ramprasath VR, Awad AB. (2015) Role of phytosterols in cancer prevention and treatment. Journal of AOAC International. 98, 735-8.
41) Woyengo TA, Ramprasath VR, Jones PJ. (2009) Anticancer effects of phytosterols. Eur J Clin Nutr. 63, 813-20.
42) Blanco-Vaca F, Cedó L, Julve J. (2019) Phytosterols in cancer: from molecular mechanisms to preventive and therapeutic potentialsCurr Med Chem. 26, 6735-49.
43) (a) Xu X.-H., Li T., Fong C.M.V., Chen X., Chen X.-J., Wang Y.-T., Huang M.-Q., Lu J.-J. Saponins from Chinese medicines as anticancer agents. Molecules. 2016;21:1326. (b) Gevrenova R., Weng A., Voutguenne-Nazabadioko L., Thakur M., Doytchinova I. Quantitative structure–activity relationship study on saponins as cytotoxicity enhancers. Lett. Drug Des. Discov. 2015;12:166–171.
44) Lea MA. (1996) Organosulfur compounds and cancer. Dietary Phytochemicals in Cancer Prevention and Treatment 147-154.
45) Omar SH, Al-Wabel NA. (2010) Organosulfur compounds and possible mechanism of garlic in cancer. Saudi Pharm J. 18, 51-8.
46) .Nupur.M.Kurmi and Swati.R.Chaudhari . A Review of Anticancer Effects of Garlic from Organosulfur Compounds. 2021
47) Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. (2013) Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer lett. 334, 133-41.
48) Rao AV, Ali A. (2007) Biologically active phytochemicals in human health: Lycopene. Int J Food Prop. 10, 279-88.
49) Rambaran TF. (2020) Nanopolyphenols: A review of their encapsulation and anti-diabetic effects. SN Applied Sciences. 2, 1-26.
50) (a) Guo Y, Sun Q, Wu FG, Dai Y, Chen X. (2021) Polyphenol‐Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. Adv Mater. 22, 2007356. (b) Vieira IR, Conte-Junior CA. (2024) Nano-delivery systems for food bioactive compounds in cancer: Prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr. 64(2):381-406.
51) Rodríguez, F., Caruana, P., De la Fuente, N., Español, P., Gámez, M., Balart, J., Llurba, E., Rovira, R., Ruiz, R., Martín-Lorente, C. and Corchero, J.L. (2022). Nano-based approved pharmaceuticals for cancer treatment: present and future challenges. Biomolecules, 12(6), 784.
52) Ezhilarasi PN, Karthik P, Chhanwal N, (2013) Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: a review. Food Bioproc Tech. 6, 628-47.
53) Rejinold NS, Muthunarayanan M, Muthuchelian K, Chennazhi KP, Nair SV, Jayakumar R. (2011) Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr Polym. 84, 407-16.
54) Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR. (2013) Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta medica. 79, 447-51.
55) Karim S, Akhter MH, Burzangi AS, Alkreathy H, Alharthy B, Kotta S, Md S, Rashid MA, Afzal O, Altamimi AS, Khalilullah H. (2022) Phytosterol-Loaded Surface-Tailored Bioactive-Polymer Nanoparticles for Cancer Treatment: Optimization, In Vitro Cell Viability, Antioxidant Activity, and Stability Studies. Gels. 2;8(4):219.
56) AbouSamra, M. M., Afifi, S. M., Galal, A. F., Kamel, R. (2023). Rutin-loaded phyto-sterosomes as a potential approach for the treatment of hepatocellular carcinoma: In vitro and in vivo studies. J. Drug Deliv. Technol. 79, 104015.
57) Wadher K, Trivedi S, Rarokar N, (2024) Umekar M. Development and assessment of rutin loaded transfersomes to improve ex vivo membrane permeability and in vitro efficacy. Hybrid Advances. 1;5:100144.
58) Grebinyk A, Prylutska S, Grebinyk S, Evstigneev M, Krysiuk I, Skaterna T, Horak I, Sun Y, Drobot L, Matyshevska O, Prylutskyy Y. (2021) Antitumor efficiency of the natural alkaloid Berberine complexed with C60 fullerene in Lewis lung carcinoma in vitro and in vivo. Cancer Nanotechnol. 12, 1-8.
59) Javed Iqbal M, Quispe C, Javed Z, Sadia H, Qadri QR, Raza S, Salehi B, Cruz-Martins N, Abdulwanis Mohamed Z, Sani Jaafaru M, Abdull Razis AF. (2021) Nanotechnology-based strategies for berberine delivery system in cancer treatment: Pulling strings to keep berberine in power. Front. Mol. Biosci. 15;7:624494.
60) Ge X, Cao Z, Chu L. (2022) The Antioxidant Effect of the Metal and Metal-Oxide Nanoparticles. Antioxidants. 11(4), 791.
61) Khan MW, Zou C, Hassan S, Din FU, Razak MY, Nawaz A, Zeb A, Wahab A, Bangash SA. . (2022) Cisplatin and oleanolic acid Co-loaded pH-sensitive CaCO3 nanoparticles for synergistic chemotherapy. RSC Advances. 23, 14808-18.
62) Zhang XK, Wang QW, Xu YJ, Sun HM, Wang L, Zhang LX. (2021) Co‐delivery of cisplatin and oleanolic acid by silica nanoparticles‐enhanced apoptosis and reverse multidrug resistance in lung cancer. Kaohsiung J Med Sci 37, 505-12.
63) Bhanumathi R, Vimala K, Shanthi K, Thangaraj R, Kannan S. (2017) Bioformulation of silver nanoparticles as berberine carrier cum anticancer agent against breast cancer. New J Chem. 41, 14466-77.
64) Fimognari C, (2007) Hrelia P. Sulforaphane as a promising molecule for fighting cancer. Mutat Res Rev Mutat Res . 635, 90-104.
65) Soni K, Kohli K. (2019) Sulforaphane-decorated gold nanoparticle for anti-cancer activity: in vitro and in vivo studies. Pharm Dev Technol. 24(4), 427-38.
66) Zare M, Sarkati MN. (2021) Chitosan‐functionalized Fe3O4 nanoparticles as an excellent biocompatible nanocarrier for silymarin delivery. Polym Adv Technol. 32(10), 4094-100.
67) Zare M, Sarkati MN, Tashakkorian H, Rahaiee S. (2022) Quercetin immobilization onto Chitosan-Functionalized Fe3O4 magnetic nanoparticles: Biocompatible nanomedicine for overcoming cancer cells. J Clust Sci. 33(2), 449-55.
68) Zare M, Sarkati MN, Rahaiee S. (2021) Fabrication of Nanoparticles based on Hesperidin-Loaded Chitosan-Functionalized Fe3O4: Evaluation of In vitro Antioxidant and Anticancer Properties. Macromol Res. 29(11), 785-90.
69) Zare M, Sarkati MN. (2023). Hyaluronic acid‐folic acid‐modified Fe3O4 magnetic nanocarriers for targeted delivery of piperine: Formation, characterization, and biological study. Appl. Organomet. Chem. 37(6), e7093.