Molecular Identification of Seed Accessions Using Bulk Seed Samples: A Case Study on Alfalfa

Document Type : Original Research

Author

Department of Biological Sciences, Tarbiat Modares University

Abstract
Iran stands out as a significant center of genetic diversity for alfalfa (Medicago sativa) worldwide, harboring diverse types of this plant. Ensuring the authenticity of alfalfa populations and varieties is crucial for farmers and seed producers, as the genetic makeup of this species directly influences forage and seed yield quality. In this study, we developed a method to identify and differentiate key Iranian cultivated alfalfa populations using microsatellite markers. We collected random samples, each containing 100 seeds, from various alfalfa accessions. Nine microsatellite loci were screened and employed to differentiate these populations based on specific allelic genotypes. Notably, the MTIC233, BI90, ACT009, TC7, MTIC183, MS30, MTIC238, and AFCA11 markers exhibited the highest differentiation ability. The genetic distance analysis revealed that 5-B and foreign accessions, as well as 29-N and foreign accessions, were the most distant from each other. Conversely, 27-G, 9-H, and 21-R exhibited the closest genetic similarity. The results revealed that, accessions 9-H, 21-R, 27-G, 25-B, 5-B, and 2-G shared a common genetic background, suggesting their close relatedness. Our proposed method allows straightforward identification of target alfalfa accessions within a short timeframe (one to two days) without the need for DNA extraction from leaves.

Keywords

Subjects


[1] Tesfaye, M., Silverstein, K. A. T., Bucciarelli, B., Samac, D. A., & Vance, C. P. (2006). The Affymetrix Medicago GeneChip®array is applicable for transcript analysis of alfalfa (Medicago sativa). Functional Plant Biology, 33(8), 783–788.
[2] Ministry of Jahad Keshavarzi, Iran. https://maj.ir/page-amar/FA/65/form/pId3352.
[3] بوشهری, ع. ا. ش. ن., فتاحی, ح., & صمدی, ب. ی. (2008). بررسی تنوع ژنتیکی ارقام و توده‌های یونجه های (Medicage sativa) تحت کشت در ایران با استفاده از نشانگرهای RAPD. فصلنامه علمی ژنتیک نوین, 3(3), 0.
[4] Brown, D. E., & Bingham, E. T. (1994). Selfing in an alfalfa seed production field. Crop Science, 34(4), 1110–1112.
[5] Salmerón, J. I. C. (2002). Biotechnology and the Improvement of Forage Legumes. Economic Botany, 56(3), 291.
[6] Osborn, T. C., Brouwer, D., & McCoy, T. J. (1997). Molecular marker analysis of alfalfa. Biotechnology and the Improvement of Forage Legumes., 91–109.
[7] Diwan, Noa, Bhagwat, A. A., Bauchan, G. B., & Cregan, P. B. (1997). Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome, 40(6), 887–895.
[8] Mengoni, A., Gori, A., & Bazzicalupo, M. (2000). Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa. Plant Breeding, 119(4), 311–317.
[9] Mohler, V., & Schwarz, G. (2004). Genotyping tools in plant breeding: from restriction fragment length polymorphisms to single nucleotide polymorphisms. In Molecular marker systems in plant breeding and crop improvement (pp. 23–38). Springer.
[10] Kidwell, K. K., Austin, D. F., & Osborn, T. C. (1994). RFLP evaluation of nine Medicago accessions representing the original germplasm sources for North American alfalfa cultivars. Crop Science, 34(1), 230–236.
[11] Falahati-Anbaran, M., Habashi, A. A., Esfahany, M., Mohammadi, S. A., & Ghareyazie, B. (2007). Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centres of origin of the species. Journal of Genetics, 86(1), 59–63.
[12] Qiang, H., Chen, Z., Zhang, Z., Wang, X., Gao, H., & Wang, Z. (2015). Molecular diversity and population structure of a worldwide collection of cultivated tetraploid alfalfa (Medicago sativa subsp. sativa L.) germplasm as revealed by microsatellite markers. PLoS ONE, 10(4), 1–12.
[13] Flajoulot, S., Ronfort, J., Baudouin, P., Barre, P., Huguet, T., Huyghe, C., & Julier, B. (2005). Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theoretical and Applied Genetics, 111(7), 1420–1429.
[14] Zaccardelli, M., Gnocchi, S., Carelli, M., & Scotti, C. (2003). Variation among and within Italian alfalfa ecotypes by means of bio‐agronomic characters and amplified fragment length polymorphism analyses. Plant Breeding, 122(1), 61–65.
[15] Abdollahi Mandoulakani, B., Piri, Y., Darvishzadeh, R., Bernoosi, I., & Jafari, M. (2012). Retroelement insertional polymorphism and genetic diversity in Medicago sativa populations revealed by IRAP and REMAP markers. Plant Molecular Biology Reporter, 30, 286–296.
[16] Mason, A. S. (2015). SSR genotyping. Methods in Molecular Biology, 1245, 77–89.
[17] Wang, Z., Weber, J. L., Zhong, G., & Tanksley, S. D. (1994). Survey of plant short tandem DNA repeats. Theoretical and Applied Genetics, 88, 1–6.
[18] Brummer, E. C., Kochert, G., & Bouton, J. H. (1991). RFLP variation in diploid and tetraploid alfalfa. Theoretical and Applied Genetics, 83, 89–96.
[19] Echt, C. S., Kidwell, K. K., Knapp, S. J., Osborn, T. C., & McCoy, T. J. (1994). Linkage mapping in diploid alfalfa (Medicago sativa). Genome, 37(1), 61–71.
[20] Kiss, G. B., Csanádi, G., Kálmán, K., Kaló, P., & Ökrész, L. (1993). Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Molecular and General Genetics MGG, 238, 129–137.
[21] Varshney, R. K., Nayak, S. N., May, G. D., & Jackson, S. A. (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. TRENDS in Biotechnology, 27(9), 522–530.
[22] Cordeiro, G. M., Casu, R., McIntyre, C. L., Manners, J. M., & Henry, R. J. (2001). Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Science, 160(6), 1115–1123.
[23] Pinto, L. R., Oliveira, K. M., Marconi, T., Garcia, A. A. F., Ulian, E. C., & De Souza, A. P. (2006). Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breeding, 125(4), 378–384.
[24] Kalwade, S. B., & Devarumath, R. M. (2014). Single strand conformation polymorphism of genomic and EST-SSRs marker and its utility in genetic evaluation of sugarcane. Physiology and Molecular Biology of Plants, 20, 313–321.
[25] Hu, J., Wang, L., & Li, J. (2011). Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biologia Plantarum, 55, 577–580.
[26] Eujayl, I., Sorrells, M. E., Baum, M., Wolters, P., & Powell, W. (2002). Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theoretical and Applied Genetics, 104, 399–407.
[27] Https://www.marketdataforecast.com/market-reports/alfalfa-seeds-market. (2023). Global Alfalfa Seeds Market Research Report - Segmentation By Type (Dormant Seed, Non-Dormant Seed), Variety (Open Pollinated, Hybrids), and Region - Industry Analysis, Share, Growth and Forecast 2022 to 2027.
[28] Annicchiarico, P., Nazzicari, N., Ananta, A., Carelli, M., Wei, Y., & Brummer, E. C. (2016). Assessment of Cultivar Distinctness in Alfalfa: A Comparison of Genotyping‐by‐Sequencing, Simple‐Sequence Repeat Marker, and Morphophysiological Observations. In The Plant Genome (Vol. 9, Issue 2).
[29] Diwan, N., Bouton, J. H., Kochert, G., & Cregan, P. B. (2000). Mapping of simple sequence repeat (SSR) DNA markers, diploid and tetraploid alfalfa. Theoretical and Applied Genetics, 101(1–2), 165–172.
[30] Eujayl, I., Sledge, M. K., Wang, L., May, G. D., Chekhovskiy, K., Zwonitzer, J. C., & Mian, M. A. R. (2004). Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theoretical and Applied Genetics, 108(3), 414–422. https://doi.org/10.1007/s00122-003-1450-6
[31] Salimi, H., Bahar, M., Mirloh, A., & Talebi, M. (2016). Assessment of the genetic diversity among potato cultivars from different geographical areas using the genomic and EST microsatellites. Iranian Journal of Biotechnology, 14(4), 270–277.
[32] Julier, B., Flajoulot, S., Barre, P., Cardinet, G., Santoni, S., Huguet, T., & Huyghe, C. (2003). Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biology, 19(3), 1–19. https://doi.org/10.1186/1471-2229-3-9
[33] Liu, Z., & Wang, Y. (2013). Global Illumina sequencing and the development of EST-SSR markers in alfalfa. 335–336.
[34] Liu, W., Jia, X., Liu, Z., Zhang, Z., Wang, Y., Liu, Z., & Xie, W. (2015). Development and characterization of transcription factor gene-derived microsatellite (TFGM) markers in medicago truncatula and their transferability in leguminous and non-leguminous species. Molecules, 20(5), 8759–8771.
[35] Clark, L. V., & Jasieniuk, M. (2011). polysat: An R package for polyploid microsatellite analysis. Molecular Ecology Resources, 11(3), 562–566. https://doi.org/10.1111/j.1755-0998.2011.02985.x
[36] Bruvo, R., Michiels, N. K., D’SOUZA, T. G., & Schulenburg, H. (2004). A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology, 13(7), 2101–2106.
[37] Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.
[38] Riday, H., Brummer, E. C., Campbell, T. A., Luth, D., & Cazcarro, P. M. (2003). Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica, 131, 37–45.
[39] Ellwood, S. R., D’souza, N. K., Kamphuis, L. G., Burgess, T. I., Nair, R. M., & Oliver, R. P. (2006). SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin. Theoretical and Applied Genetics, 112, 977–983.
[40] مقدم, و. ع. (1382). حفاظت شدگی و توانایی ایجاد پلی مورفیسم میکروساتلایت‌های در تعدادی از گونه‌های مرتعی و خانواده Leguminosae ایران. پایان نامه. دانشگاه صنعتی اصفهان.