1. Behzadipour, H., Pakbaz, M. S. and Ghezelbash, G. R. (2019) Effects of biocementation on strength parameters of silty and clayey sands. Bioinspired, Biomim. Nanobiomaterials. 9, 24-32.
2. Khodadadi Tirkolaei, H. and Bilsel, H. (2015) Statistical modeling of environmental factors on microbial urea hydrolysis process for biocement production. Adv. Mater. Sci. 2015, 340930
3. Gomez, M. G., Graddy, C. M., DeJong, J. T. and Nelson, D. C. (2019) Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms. Sci. Rep. 9, 1-5.
4. Sarda, D., Choonia, H. S., Sarode, D. D. and Lele, S. S. (2009) Biocalcification by Bacillus pasteurii urease: a novel application. J. Ind. Microbiol. Biotechnol. 36, 1111-1115.
5. Lauchnor, E. G., Topp, D. M., Parker, A. E. and Gerlach, R. (2015) Whole cell kinetics of ureolysis by Sporosarcina pasteurii. J. Appl. Microbiol. 118, 1321-1332.
6. Ng, W. S., Lee, M. L. and Hii, S. L. (2012) An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. Int. J. Civ. Environ. Eng. 6, 188-94.
7. Chahal, N., Rajor, A. and Siddique, R. (2011) Calcium carbonate precipitation by different bacterial strains. Afr. J. Biotechnol. 10, 8359-72.
8. Nasfi, Z., Busch, H., Kehraus, S., Linares-Otoya, L., König, G. M., Schäberle, T. F. and Bachoual, R. (2018) Soil bacteria isolated from tunisian arid areas show promising antimicrobial activities against gram-negatives. Front. Microbiol. 9, 2742.
9. Eaton, A. D., Clesceri, L. S. and Greenberg, A. E. (2014) Standard methods: for the examination of water and wastewater. Water Environment Federation, Virginia, United States, pp 5-35.
10. Stabnikov, V., Jian, C., Ivanov, V. and Li, Y. (2013) Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World J. Microbiol. Biotechnol. 29, 1453-60.
11. Gat, D., Tsesarsky, M., Shamir, D., and Ronen, Z. (2014). Accelerated microbial induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria. Biogeosciences, 11(10), 2561.
12. Whiffin, V. S., Van Paassen, L. A. and Harkes, M. P. (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24, 417-423.
13. Leeprasert, L., Chonudomkul, D. and Boonmak, C. (2022) Biocalcifying potential of ureolytic bacteria isolated from soil for biocementation and material crack repair. Microorganisms. 10, 963.
14. Ghezelbash, G. R. and Haddadi, M. (2018) Production of nanocalcite crystal by a urease producing halophilic strain of Staphylococcus saprophyticus and analysis of its properties by XRD and SEM. World J. Microbiol. Biotechnol. 34, 1-10.
15- Brenner, D. J., Krieg, N. R., Staley, J. T. and Garrity, G. M. (2005) Bergey’s manual of systematic bacteriology, vol 2. Springer, New York, pp 392–420.
16. Li, W., Liu, L.P., Zhou, P.P., Cao, L., Yu, L.J. and Jiang, S.Y. (2011). Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase. Curr. Sci. 100, 502-508.
17. Nakano, H., Takenishi, S. and Watanabe, Y. (1984) Purification and properties of urease from Brevibacterium ammoniagenes. Agric. Biol. Chem. 48, 1495-1502.
18. Abdel-Aleem, H., Dishisha, T., Saafan, A., AbouKhadra, A. A. and Gaber, Y. (2019) Biocementation of soil by calcite/aragonite precipitation using Pseudomonas azotoformans and Citrobacter freundii derived enzymes. RSC Adv. 31, 17601-17611.
19. Whiffin, V. S. (2004) Microbial CaCO3 precipitation for the production of biocement. Doctoral dissertation, Murdoch University.
20. Mobley, H. L. and Hausinger, R. P. (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev. 53, 85-108.