1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. cell. 2012;149(5):1060-72.
2. Kuang F, Liu J, Tang D, Kang R. Oxidative damage and antioxidant defense in ferroptosis. Frontiers in Cell and Developmental Biology. 2020;8:586578.
3. Do Q, Zhang R, Hooper G, Xu L. Differential contributions of distinct free radical peroxidation mechanisms to the induction of ferroptosis. JACS Au. 2023;3(4):1100-17.
4. Chen X, Kang R, Tang D. Ferroptosis by lipid peroxidation: the tip of the iceberg? Frontiers in Cell and Developmental Biology. 2021;9:646890.
5. Barayeu U, Schilling D, Eid M, Xavier da Silva TN, Schlicker L, Mitreska N, et al. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nature chemical biology. 2023;19(1):28-37.
6. Neto AJ, Cordeiro RM. Molecular simulations of the effects of phospholipid and cholesterol peroxidation on lipid membrane properties. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2016;1858(9):2191-8.
7. Wong-Ekkabut J, Xu Z, Triampo W, Tang I-M, Tieleman DP, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophysical journal. 2007;93(12):4225-36.
8. Panasenko OM, Evgina SA, Driomina ES, Sharov VS, Sergienko VI, Vladimirov YA. Hypochlorite induces lipid peroxidation in blood lipoproteins and phospholipid liposomes. Free Radical Biology and Medicine. 1995;19(2):133-40.
9. Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015;5(2):472-84.
10. Su L-J, Zhang J-H, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative medicine and cellular longevity. 2019;2019.
11. Fenton HJH. LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions. 1894;65:899-910.
12. Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences. 1934;147(861):332-51.
13. Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell metabolism. 2008;8(3):237-48.
14. Ding X-Z, Hennig R, Adrian TE. Lipoxygenase and cyclooxygenase metabolism: new insights in treatment and chemoprevention of pancreatic cancer. Molecular cancer. 2003;2(1):1-12.
15. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proceedings of the National Academy of Sciences. 2016;113(34):E4966-E75.
16. Kagan VE, Tyurina YY, Vlasova II, Kapralov AA, Amoscato AA, Anthonymuthu TS, et al. Redox epiphospholipidome in programmed cell death signaling: catalytic mechanisms and regulation. Frontiers in Endocrinology. 2021;11:628079.
17. Samovich SN, Mikulska‐Ruminska K, Dar HH, Tyurina YY, Tyurin VA, Souryavong AB, et al. Strikingly High Activity of 15‐Lipoxygenase Towards Di‐Polyunsaturated Arachidonoyl/Adrenoyl‐Phosphatidylethanolamines Generates Peroxidation Signals of Ferroptotic Cell Death. Angewandte Chemie International Edition. 2024;63(9):e202314710.
18. Sun Q, Liu D, Cui W, Cheng H, Huang L, Zhang R, et al. Cholesterol mediated ferroptosis suppression reveals essential roles of Coenzyme Q and squalene. Communications Biology. 2023;6(1):1108.
19. Hu Q, Zhang Y, Lou H, Ou Z, Liu J, Duan W, et al. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell death & disease. 2021;12(7):706.
20. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021;17(9):2054-81.
21. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693-8.
22. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism. 1982;710(2):197-211.
23. Liu H, Schreiber SL, Stockwell BR. Targeting dependency on the GPX4 lipid peroxide repair pathway for cancer therapy. Biochemistry. 2018;57(14):2059-60.
24. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1):317-31.
25. Moon S-H, Huang C-H, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP, et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell. 2019;176(3):564-80. e19.
26. Porter NA. Mechanisms for the autoxidation of polyunsaturated lipids. Accounts of Chemical Research. 1986;19(9):262-8.
27. Marnett LJ. Peroxyl free radicals: potential mediators of tumor initiation and promotion. Carcinogenesis. 1987;8(10):1365-73.
28. Schneider C. An update on products and mechanisms of lipid peroxidation. Molecular nutrition & food research. 2009;53(3):315-21.
29. Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature chemical biology. 2017;13(1):81-90.
30. Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, et al. Targeting ferroptosis in breast cancer. Biomarker research. 2020;8:1-27.
31. Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochemical and biophysical research communications. 2016;478(3):1338-43.
32. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature chemical biology. 2017;13(1):91-8.
33. Wang B, Tontonoz P. Phospholipid remodeling in physiology and disease. Annual review of physiology. 2019;81:165-88.
34. Küch E-M, Vellaramkalayil R, Zhang I, Lehnen D, Brügger B, Stremmel W, et al. Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2014;1841(2):227-39.
35. Vickers NJ. Animal communication: when i’m calling you, will you answer too? Current biology. 2017;27(14):R713-R5.
36. Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8(3):72.
37. Shah R, Shchepinov MS, Pratt DA. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS central science. 2018;4(3):387-96.
38. Trostchansky A, Rubbo H. Bioactive Lipids in Health and Disease: Springer; 2019.
39. Yawata Y. Cell membrane: the red blood cell as a model: John Wiley & Sons; 2006.
40. van Meer G. Dynamic transbilayer lipid asymmetry. Cold Spring Harbor perspectives in biology. 2011;3(5):a004671.
41. Marquardt D, Geier B, Pabst G. Asymmetric lipid membranes: towards more realistic model systems. Membranes. 2015;5(2):180-96.
42. Devaux PF, Herrmann A, Ohlwein N, Kozlov MM. How lipid flippases can modulate membrane structure. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2008;1778(7-8):1591-600.
43. Bevers EM, Comfurius P, Dekkers DW, Zwaal RF. Lipid translocation across the plasma membrane of mammalian cells. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 1999;1439(3):317-30.
44. Verkleij A, Zwaal R, Roelofsen B, Comfurius P, Kastelijn D, Van Deenen L. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1973;323(2):178-93.
45. Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood, The Journal of the American Society of Hematology. 2008;112(10):3939-48.
46. Marquardt D, Kučerka N, Wassall SR, Harroun TA, Katsaras J. Cholesterol's location in lipid bilayers. Chemistry and Physics of Lipids. 2016;199:17-25.
47. Choubey A, Kalia RK, Malmstadt N, Nakano A, Vashishta P. Cholesterol translocation in a phospholipid membrane. Biophysical journal. 2013;104(11):2429-36.
48. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila‐Contreras EM, et al. CHARMM‐GUI membrane builder toward realistic biological membrane simulations. Wiley Online Library; 2014.
49. Jo S, Kim T, Iyer VG, Im W. CHARMM‐GUI: a web‐based graphical user interface for CHARMM. Journal of computational chemistry. 2008;29(11):1859-65.
50. Jo S, Lim JB, Klauda JB, Im W. CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophysical journal. 2009;97(1):50-8.
51. Martínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of computational chemistry. 2009;30(13):2157-64.
52. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. The Journal of chemical physics. 2007;126(1).
53. Alipour M, Hajipour-Verdom B, Abdolmaleki P, Javan M. Molecular properties of Ca2+ transport through TRPV2 channel: a molecular dynamics simulations study. Journal of Biomolecular Structure and Dynamics. 2023;41(9):3892-9.
54. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics. 1981;52(12):7182-90.
55. Cheatham TI, Miller J, Fox T, Darden T, Kollman P. Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. Journal of the American Chemical Society. 1995;117(14):4193-4.
56. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. The journal of physical chemistry B. 2010;114(23):7830-43.
57. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of chemical theory and computation. 2010;6(2):459-66.
58. Piggot TJ, Pineiro A, Khalid S. Molecular dynamics simulations of phosphatidylcholine membranes: a comparative force field study. Journal of chemical theory and computation. 2012;8(11):4593-609.
59. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. Journal of computational chemistry. 2010;31(4):671-90.
60. Garrec J, Monari A, Assfeld X, Mir LM, Tarek M. Lipid peroxidation in membranes: the peroxyl radical does not “float”. The Journal of Physical Chemistry Letters. 2014;5(10):1653-8.
61. Kumar S, Yadav DK, Choi E-H, Kim M-H. Insight from Molecular dynamic simulation of reactive oxygen species in oxidized skin membrane. Scientific reports. 2018;8(1):13271.
62. Mason RP, Walter MF, Mason PE. Effect of oxidative stress on membrane structure: small-angle X-ray diffraction analysis. Free Radical Biology and Medicine. 1997;23(3):419-25.
63. Himbert S, Alsop RJ, Rose M, Hertz L, Dhaliwal A, Moran-Mirabal JM, et al. The molecular structure of human red blood cell membranes from highly oriented, solid supported multi-lamellar membranes. Scientific reports. 2017;7(1):39661.
64. Yang H, Zhou M, Li H, Wei T, Tang C, Zhou Y, et al. Effects of low-level lipid peroxidation on the permeability of nitroaromatic molecules across a membrane: a computational study. ACS omega. 2020;5(10):4798-806.
65. Jurkiewicz P, Olżyńska A, Cwiklik L, Conte E, Jungwirth P, Megli FM, et al. Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2012;1818(10):2388-402.
66. Weber G, Charitat T, Baptista MS, Uchoa AF, Pavani C, Junqueira HC, et al. Lipid oxidation induces structural changes in biomimetic membranes. Soft matter. 2014;10(24):4241-7