منایع
1. Boal D, Boal DH. Mechanics of the Cell: Cambridge University Press; 2012.
2. Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA. Heparin-binding domain of fibrin (ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix.
Proceedings of the National Academy of Sciences. 2013;110(12):4563-8.
3. Cardin AD, Weintraub H. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis: An Official Journal of the American Heart Association, Inc. 1989;9(1):21-32.
4. Sakiyama SE, Schense JC, Hubbell JA. Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. The FASEB Journal. 1999;13(15):2214-24.
5. Munoz EM, Linhardt RJ. Heparin-binding domains in vascular biology. Arteriosclerosis, thrombosis, and vascular biology. 2004;24(9):1549-57.
6. Rajangam K, Behanna HA, Hui MJ, Han X, Hulvat JF, Lomasney JW, et al. Heparin binding nanostructures to promote growth of blood vessels. Nano letters. 2006;6(9):2086-90.
7. Tae G, Kim Y-J, Choi W-I, Kim M, Stayton PS, Hoffman AS. Formation of a novel heparin-based hydrogel in the presence of heparin-binding biomolecules. Biomacromolecules. 2007;8(6):1979-86.
8. Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA. Heparin-binding domain of fibrin (ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proceedings of the National Academy of Sciences. 2013:201221602.
9. Amidzadeh Z, Rismani E, Shokrgozar MA, Rahimi H, Golkar M. In silico design of fusion keratinocyte growth factor containing collagen-binding domain for tissue engineering application. Journal of Molecular Graphics and Modelling. 2023;118:108351.
10. Roy MD, Stanley SK, Amis EJ, Becker ML. Identification of a highly specific hydroxyapatite‐binding peptide using phage display. Advanced Materials. 2008;20(10):1830-6.
11. Benson DA, Karsch‐Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic acids research. 2004;32(suppl_1):D23-D6.
12. Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G. Homology modeling, model and software evaluation: three related resources. Bioinformatics (Oxford, England). 1998;14(6):523-8.
13. Ye Y, Li Z, Godzik A. Modeling and analyzing three-dimensional structures of human disease proteins. Biocomputing 2006: World Scientific; 2006. p. 439-50.
14. Chiuri R, Maiorano G, Rizzello A, Del Mercato L, Cingolani R, Rinaldi R, et al. Exploring local flexibility/rigidity in psychrophilic and mesophilic carbonic anhydrases. Biophysical journal. 2009;96(4):1586-96.
15. Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic acids research. 1999;27(1):49-54.
16. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, et al. A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. Journal of computational chemistry. 2003;24(16):1999-2012.
17. Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of chemical physics. 1993;98(12):10089-92.
18. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics. 1983;79(2):926-35.
19. Schippers PH, Dekkers HP. Direct determination of absolute circular dichroism data and calibration of commercial instruments. Analytical Chemistry. 1981;53(6):778-82.
20. Webster DM. Protein structure prediction: methods and protocols: Springer Science & Business Media; 2000.
21. Brogi S, Ramalho TC, Kuca K, Medina-Franco JL, Valko M. In silico methods for drug design and discovery. Frontiers Media SA; 2020. p. 612.
22. Dana H, Mahmoodi Chalbatani G, Gharagouzloo E, Miri SR, Memari F, Rasoolzadeh R, et al. In silico analysis, molecular docking, molecular dynamic, cloning, expression and purification of chimeric protein in colorectal cancer treatment. Drug design, development and therapy. 2020:309-29.
23. Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, et al. Broadly applicable and accurate protein design by integrating structure prediction networks and diffusion generative models. BioRxiv. 2022:2022.12. 09.519842.
24. Somers G. Structural aspects of fusion proteins determining the level of commercial success. Fusion protein technologies for biopharmaceuticals: applications and challenges. 2013:39-56.
25. Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. Molecular dynamics simulations and novel drug discovery. Expert opinion on drug discovery. 2018;13(1):23-37.
26. Deng L, Vysotski ES, Markova SV, Liu ZJ, Lee J, Rose J, et al. All three Ca2+‐binding loops of photoproteins bind calcium ions: The crystal structures of calcium‐loaded apo‐aequorin and apo‐obelin. Protein science. 2005;14(3):663-75.
27. Kurplus M, McCammon J. Dynamics of proteins: elements and function. Annual review of biochemistry. 1983;52(1):263-300.
28. Karplus M. Dynamics of proteins. Advances in biophysics. 1984;18:165-90.
29. Karplus M, McCammon JA. The dynamics of proteins. Scientific American. 1986;254(4):42-51.
30. Karplus M, Swaminathan S, Ichiye T, Van Gunsteren W. Local and collective motions in protein dynamics. Mobility and Function in Proteins and Nucleic Acids. 1983:271.
31. Cannon WR, Singleton SF, Benkovic SJ. A perspective on biological catalysis. Nature structural biology. 1996;3(10):821.
32. Williams R. Are enzymes mechanical devices? Trends in biochemical sciences. 1993;18(4):115-7.
33. Ichiye T, Karplus M. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins: Structure, Function, and Bioinformatics. 1991;11(3):205-17.
34. Amadei A, Linssen AB, Berendsen HJ. Essential dynamics of proteins. Proteins: Structure, Function, and Bioinformatics. 1993;17(4):412-25.
35. Simmerling C, Strockbine B, Roitberg AE. All-atom structure prediction and folding simulations of a stable protein. Journal of the American Chemical Society. 2002;124(38):11258-9.
36. Mitsi M, Hong Z, Costello CE, Nugent MA. Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. Biochemistry. 2006;45(34):10319-28.
37. Liu K, Watanabe E, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. Journal of computer-aided molecular design. 2017;31:201-11.
38. Burgoyne NJ, Jackson RM. Predicting protein interaction sites: binding hot-spots in protein–protein and protein–ligand interfaces. Bioinformatics. 2006;22(11):1335-42.
39. Gandhi NS, Mancera RL. Prediction of heparin binding sites in bone morphogenetic proteins (BMPs). Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2012;1824(12):1374-81.
40. Aykul S, Maust J, Martinez-Hackert E. BMP-4 extraction from extracellular matrix and analysis of heparin-binding properties. Molecular biotechnology. 2022:1-15.
41. Siverino C, Fahmy-Garcia S, Niklaus V, Kops N, Dolcini L, Misciagna MM, et al. Addition of heparin binding sites strongly increases the bone forming capabilities of BMP9 in vivo. Bioactive Materials. 2023;29:241-50.