1. Fakhri N, Abarghoei S, Dadmehr M, Hosseini M, Sabahi H, Ganjali MR. Paper based colorimetric detection of miRNA-21 using Ag/Pt nanoclusters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;227:117529.
2. Choi C, Nam J-P, Nah J-W. Application of chitosan and chitosan derivatives as biomaterials. Journal of Industrial and Engineering Chemistry. 2016;33:1-10.
3. Zhao J, Fu W, Liao H, Dai L, Jiang Z, Pan Y, et al. The regulatory and predictive functions of miR-17 and miR-92 families on cisplatin resistance of non-small cell lung cancer. BMC cancer. 2015;15(1):1-14.
4. Lee D, Zhang W, Shirley SA, Kong X, Hellermann GR, Lockey RF, et al. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharmaceutical research. 2007;24(1):157-67.
5. Zamay, T.N., et al. Current and prospective protein biomarkers of lung cancer. Cancers, 2017. 9(11): p. 155.
6. Liu X, Chen Y, Huang Q, He W, Feng Q, Yu B. A novel thermo-sensitive hydrogel based on thiolated chitosan/hydroxyapatite/beta-glycerophosphate. Carbohydrate Polymers. 2014;110:62-9.
7. Jantus-Lewintre, E., et al., Update on biomarkers for the detection of lung cancer. Lung Cancer: Targets and Therapy, 2012. 3: p. 21.
8. Akbuga J, Ozbas-Turan S, Ekentok C. Chitosan Nanoparticles in Gene Delivery. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Springer; 2016. p. 337-51.
9. Kritchenkov AS, Egorov AR, Artemjev AA, Kritchenkov IS, Volkova OV, Kurliuk AV, et al. Ultrasound-assisted catalyst-free thiol-yne click reaction in chitosan chemistry: Antibacterial and transfection activity of novel cationic chitosan derivatives and their based nanoparticles. International Journal of Biological Macromolecules. 2020;143:143-52.
10. Morin-Crini N, Lichtfouse E, Torri G, Crini G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters. 2019;17(4):1667-92.
11. Saeed RM, Dmour I, Taha MO. Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Frontiers in bioengineering and biotechnology. 2020;8:4.
12. Azmana M, Mahmood S, Hilles AR, Rahman A, Arifin MAB, Ahmed S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International journal of biological macromolecules. 2021;185:832-48.
13. Tekie FSM, Soleimani M, Zakerian A, Dinarvand M, Amini M, Dinarvand R, et al. Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydrate polymers. 2018;201:131-40.
14. Shaban NZ, Aboelsaad AM, Shoueir KR, Abdulmalek SA, Awad D, Shaban SY, et al. Chitosan-based dithiophenolato nanoparticles: Preparation, mechanistic information of DNA binding, antibacterial and cytotoxic activities. Journal of Molecular Liquids. 2020;318:114252.
15. Summonte S, Racaniello GF, Lopedota A, Denora N, Bernkop-Schnürch A. Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. Journal of Controlled Release. 2021;330:470-82.
16. Luo Q, Han Q, Wang Y, Zhang H, Fei Z, Wang Y. The thiolated chitosan: Synthesis, gelling and antibacterial capability. International Journal of Biological Macromolecules. 2019;139:521-30.
17. Shandilya R, Ranjan S, Khare S, Bhargava A, Goryacheva IY, Mishra PK. Point-of-care diagnostics approaches for detection of lung cancer-associated circulating miRNAs. Drug Discovery Today. 2021;26(6):1501-9.
18. Azzouz A, Hejji L, Kim K-H, Kukkar D, Souhail B, Bhardwaj N, et al. Advances in surface plasmon resonance–based biosensor technologies for cancer biomarker detection. Biosensors and Bioelectronics. 2022;197:113767.
19. Shafabakhsh R, Yousefi B, Asemi Z, Nikfar B, Mansournia MA, Hallajzadeh J. Chitosan: A compound for drug delivery system in gastric cancer-a review. Carbohydrate Polymers. 2020;242:116403.
20. Li W, Jiang C, Lu S, Wang F, Zhang Z, Wei T, et al. A hydrogel microsphere-based sensor for dual and highly selective detection of Al3+ and Hg2+. Sensors and Actuators B: Chemical. 2020;321:128490.
21. Kassahun G, Griveau S, Juillard S, Champavert J, Ringuede A, Bresson B, et al. Hydrogel matrix-grafted Impedimetric Aptasensors for the detection of Diclofenac. Langmuir. 2020;36(4):827-36.
22. Gam JJ, Babb J, Weiss R. A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity. Nature communications. 2018;9(1):1-12.
23. Chen W, Cai B, Geng Z, Chen F, Wang Z, Wang L, et al. Reducing false negatives in COVID-19 testing by using microneedle-based oropharyngeal swabs. Matter. 2020;3(5):1589-600.
24. Martínez-Ruvalcaba A, Chornet E, Rodrigue D. Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym. 2017;67:586–595.
25. Da Som Jeon et al. Five-Year Overall Survival and Prognostic Factors in Patients with Lung Cancer: Results from the Korean Association of Lung Cancer Registry (KALC-R) 2015. Cancer Res Treat. 2023 Jan; 55(1): 103–111
26. Sahafnejad Z, Hashemzadeh H, Allahverdi A, Fathi A, Saievar-Iranizad E, Naderi-Manesh H. Sensitive detection of miR-9 in human serum: An electrochemical approach utilizing robust gold nanostructures for early diagnosis of lung cancer. Talanta Open. Vol 8. 100272-89
27. Smolarz B, Durczyński A, Romanowicz H, Szyłło K, Hogendorf P. miRNAs in Cancer (Review of Literature). Int J Mol Sci. 2022 Mar; 23(5): 2805
28. Shademan Behrouz et al. MicroRNAs as Targets for Cancer Diagnosis: Interests and Limitations. Adv Pharm Bull. 2023 Jul; 13(3): 435–445.