Investigating the effect of electric dipole of antiparallel alpha helices on the structure and function of photoprotein Mnemiopsin 2

Authors

1 University of Zanjan

2 University of Guilan

Abstract
In this study, the electrostatic interactions between the third and fourth antiparallel helices of Mnemiopsin 2 have studied. Due to the distribution of the positive and negatively charged residues at the C- and N-terminals of helices, we treated them as two antiparallel nanowires with electric dipole character. By mutating Phe87 to Arg, we aimed to enhance the electric dipole of the fourth helix. The MODELLER program was employed to generate the tertiary structure of the wild-type and mutant proteins. The expression system was prepared using the site-directed mutagenesis procedure. Activity measurements revealed that while the wild-type protein exhibited faster reaction initiation and a higher decay rate. However, the mutant displayed a significantly higher photon yield, approximately double that of the wild-type. Intrinsic fluorescence measurements indicated that the microenvironment around the chromophores in the mutant photoprotein had altered, leading to increased distance of chromophores from internal quenchers. However, the overall structure of the mutant protein became more compact, as confirmed by the ANS-based fluorescence. Heat-induced denaturation experiments showed that while the melting temperature (Tm) remained unaffected, the enthalpy change of denaturation increased significantly in the mutant, suggesting enhanced cooperativity in the intramolecular stabilizing interactions. Finally, it was concluded that increasing the cooperativity between the stabilizing interactions in the mutant protein, stabilize the native structure, leading to a higher population of functional complexes and, consequently, a higher photon yield.

Keywords

Subjects


1. Wilson, T., and Hastings, J. W. (1998) Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197–230
2. Haddock, S. H. D., Moline, M. A., and Case, J. F. (2010) Bioluminescence in the sea. Ann. Rev. Mar. Sci. 2, 443–93
3. Hosseinkhani, S. (2011) Molecular enigma of multicolor bioluminescence of firefly luciferase. Cell. Mol. Life Sci. 68, 1167–1182
4. Khalifeh, K., Ranjbar, B., Alipour, B. S. B. S., and Hosseinkhani, S. (2011) The effect of surface charge balance on thermodynamic stability and kinetics of refolding of firefly luciferase. BMB Rep. 44, 102–106
5. Hakiminia, F., Molakarimi, M., Khalifeh, K., Jahani, Z., Sajedi, R. H., and Ranjbar, B. (2016) Adjustment of local conformational flexibility and accessible surface area alterations of Serine128 and Valine183 in mnemiopsin. J. Mol. Struct. 1117, 287–292
6. Hakiminia, F., Khalifeh, K., Sajedi, R. H., and Ranjbar, B. (2016) Determination of structural elements on the folding reaction of mnemiopsin by spectroscopic techniques. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 158, 49–55
7. حکیمی‌نیا, ف., خلیفه, خ., حسن‌ساجدی, ر., رنجبر, ب. (1397) تاثیر جایگزینی اسیدآمینه آرژینین ۳۹ با لیزین روی واسرشتگی گرمایی فتوپروتئین نمیوپسین 1. مجله زیست‌فناوری مدرس. 9, 1–7
8. جهانی, ز., ملاکریمی, م., حسن‌ساجدی, ر., تقدیر, م., حسینخانی, س .,اصغری, س. م. (1393) بررسی نقش برخی از آمینواسیدهای حفره اتصال کلنترازین در فتوپروتئین نمیوپسین در مقایسه با فتوپروتئینهای کیسه‌تنان. مجله زیست‌فناوری مدرس. 5, 1–13
9. Eremeeva, E. V., and Vysotski, E. S. (2019) Exploring Bioluminescence Function of the Ca2+-regulated Photoproteins with Site-directed Mutagenesis. Photochem. Photobiol. 10.1111/php.12945
10. Ohmiya, Y., and Hirano, T. (1996) Shining the light: The mechanism of the bioluminescence reaction of calcium-binding photoproteins. Chem. Biol. 10.1016/S1074-5521(96)90116-7
11. HASTINGS, J. W., Mitchell, G., Mattingly, P. H., Blinks, J. R., and Leeuven, M. Van (1969) Response of Aequorin Bioluminescence To Rapid Changes in Calcium Concentration. Nature. 222, 1047–1050
12. Daunert, S., and Deo, S. K. (2006) Photoproteins in Bioanalysis. Photoproteins Bioanal. 10.1002/3527609148
13. Roda, A., Guardigli, M., Michelini, E., and Mirasoli, M. (2009) Bioluminescence in analytical chemistry and in vivo imaging. TrAC - Trends Anal. Chem. 28, 307–322
14. Frank, L. A., Borisova, V. V., Markova, S. V., Malikova, N. P., Stepanyuk, G. A., and Vysotski, E. S. (2008) Violet and greenish photoprotein obelin mutants for reporter applications in dual-color assay. Anal. Bioanal. Chem. 391, 2223–2225
15. Hematyar, M., Jafarian, V., and Shirdel, A. (2022) Longer characteristic wavelength in a novel engineered photoprotein Mnemiopsin 2. Photochem. Photobiol. Sci. 21, 1031–1040
16. Jafarian, V., Sariri, R., Hosseinkhani, S., Aghamaali, M. R., Sajedi, R. H., Taghdir, M., and Hassannia, S. (2011) A unique EF-hand motif in mnemiopsin photoprotein from Mnemiopsis leidyi: Implication for its low calcium sensitivity. Biochem. Biophys. Res. Commun. 413, 164–170
17. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410
18. Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y. M., Buso, N., and Lopez, R. (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 43, W580–W584
19. Gouet, P., Courcelle, E., Stuart, D. I., and Métoz, F. (1999) ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics. 15, 305–308
20. Webb, B., and Sali, A. (2016) Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma. 10.1002/cpbi.3
21. Fiser, A., and Šali, A. (2003) MODELLER: Generation and Refinement of Homology-Based Protein Structure Models. Methods Enzymol. 374, 461–491
22. Shen, M.-Y., and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–24
23. Head, J. F., Inouye, S., Teranishi, K., and Shimomura, O. (2000) The crystal structure of the photoprotein aequorin at 2.3 Å resolution. Nature. 405, 372–376
24. Stepanyuk, G. A., Liu, Z. J., Burakova, L. P., Lee, J., Rose, J., Vysotski, E. S., and Wang, B. C. (2013) Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca2 +-loaded apoprotein conformation state. Biochim. Biophys. Acta - Proteins Proteomics. 1834, 2139–2146
25. Burakova, L. P., Natashin, P. V., Malikova, N. P., Niu, F., Pu, M., Vysotski, E. S., and Liu, Z. J. (2016) All Ca2+-binding loops of light-sensitive ctenophore photoprotein berovin bind magnesium ions: The spatial structure of Mg2 +-loaded apo-berovin. J. Photochem. Photobiol. B Biol. 154, 57–66
26. Meng, E. C., Pettersen, E. F., Couch, G. S., Huang, C. C., and Ferrin, T. E. (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics. 7, 339
27. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612
28. Shirdel, S. A., and Khalifeh, K. (2019) Thermodynamics of protein folding: methodology, data analysis and interpretation of data. Eur. Biophys. J. 48, 305–316
29. Mohammadi Ghanbarlou, R., Shirdel, S. A., Jafarian, V., and Khalifeh, K. (2018) Molecular mechanisms governing the evolutionary conservation of Glycine in the 6th position of loops ΙΙΙ and ΙV in photoprotein mnemiopsin 2. J. Photochem. Photobiol. B Biol. 10.1016/j.jphotobiol.2018.08.002
30. Vafa, M., Khalifeh, K., and Jafarian, V. (2018) Negative net charge of EF-hand loop I can affect both calcium sensitivity and substrate binding pattern in mnemiopsin 2. Photochem. Photobiol. Sci. 17, 807–814