کارایی ترکیبات ضدمیکروبی طبیعی و شیمیایی در کنتر

Document Type : Original Research

Authors

1 Department of Horticultural science, Faculty of Agriculture and environmental science, Arak University, Arak 38156-8-8349, Iran

2 Arak university

Abstract
A critical aspect of laboratory techniques in plant in vitro culture involves the disinfection of explants and the maintenance of sterile environments. Ideally, disinfectants should demonstrate efficacy against a broad spectrum of microorganisms at minimal concentrations. However, the rising application of antibiotics has led to the development of microbial resistance to these agents. Currently, compounds such as essential oils and nanoparticles are being explored in microbiological research. This study aimed to evaluate the effectiveness of three antibiotic groups (cefazolin, penicillin, and chloramphenicol) alongside cumin essential oil and silver nanoparticles in managing in vitro contamination in potato plants (Solanum tuberosum L.). The explants underwent 1 min disinfection with 70% ethanol, followed by a 10 min treatment with a commercial bleach solution. Additional disinfection treatments, including cefazolin, chloramphenicol, penicillin, silver nanoparticles, and cumin essential oil, were applied at concentrations of 10, 20, 40, and 80 mg l-1 for nanoparticles, and 100 and 200 mg l-1 for the other agents in the cultivation medium. The findings indicated that cumin essential oil exhibited the highest level of microbial inhibition, while cefazolin showed the least. Notably, the application of nanosilver at 40 mg L-1 resulted in a 73% reduction in bacterial contamination, whereas penicillin at 100 mg L-1 achieved a 67% inhibition rate. Ultimately, essential oils and nanoparticles present viable alternatives to conventional chemical treatments for the elimination and management of in vitro contamination in plant explants under laboratory conditions.

Keywords

Subjects


[1] متقی م, رضوی‌زاده ر, مختاری آ و اطرشی م (1398). تعیین شرایط بهینه برای ریزازدیادی گیاه زالزالک (Cratagus aronia) در شرایط کشت درون شیشه‌ای. مجله پژوهش‌های گیاهی (مجله زیست شناسی ایران)(علمی). 32(1):205-217.
[2] Koleva Gudeva L, Mitrev S, Trajkova F and Ilievski M (2012). Micropropagation of Potato Solanum tuberosum L. Electronic Journal of Biology 8(3):45-49.
[3] Cassells Alan C (2012). Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests, Plant cell culture protocols. 57-80.
[4] Jasim N S, Salih A M, and Ati M A (2021). Evaluating the efficiency of plants essential oils against common fungal contamination affecting tissue culture of date palms (Phoenix dactylifera L.) by in vitro culture. Res. J. Chem. Environ. 25:40-45.
[5] Torres K C (2012). Tissue culture techniques for horticultural crops. Springer Science & Business Media. 285.
[6] Pérez-Tornero O, Burgos L, and Egea J (1999). Introduction and establishment of apricot in vitro through regeneration of shoots from meristem tips. In Vitro Cellular & Developmental Biology-Plant. 35:249-253.
[7] Sondi I and Salopek-Sondi B (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science. 275(1):177-182.
[8] Kneifel W and Leonhardt W (1992). Testing of different antibiotics against Gram-positive and Gram-negative bacteria isolated from plant tissue culture. Plant cell, tissue and organ culture. 29:139-144.
[9] تقی‌زاده م، بابالار م، زمانی ذ و نادری ر (1383) تولید شاخساره نابجا در لاله زینتی به‌روش کشت درون‌شیشه‌ای. پایان‌نامه کارشناسی ارشد. دانشگاه تهران.
[10] Al-Mayahi A M, Ahmed A N and Al-Khalifa A A (2010). Isolation and identification of associated fungi with the micropropagation of five different date palm cultivars and the effect of Benlate fungicides in their control. Basra J. Date Palm Res. 9(2):79-97.
[11] رضازاده ب، قنبری ع، پوربیرامی‌هیر ی و حق‌جویان ر (1400). بررسی تیمارهای مختلف ضدعفونی بر روی ریزنمونه‌های قره‌قاط (Vaccinium arctostaphylos L). مجله پژوهش‌های گیاهی (مجله زیست‌شناسی ایران). 34(1):82-94.
[12] Kim J S, Kuk E, Yu K N, Kim J H, Park S J, Lee H J, Kim S H, Park Y K, Park Y H, Hwany C Y, Kim Y K, Lee S Y, Jeong D H and Cho M H (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, biology and medicine. 3(1):95-101.
[13] Navarro E, Baun A, Behra R, Hartmann N B, Filser J, Miao A J, Quiagg A, Santschi P H and Sigg L (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17:372-386.
[14] Leifert C, Ritchie J Y and Waites W M (1991). Contaminants of plant-tissue and cell cultures. World Journal of Microbiology and Biotechnology. 7(4):452-469.
[15] تقی‌زاده م، سلگی م و شهرجردی ا (1395). بررسی اثرات ضدمیکروبی اسانس‌های طبیعی جهت گندزدایی سطحی ریزنمونه‌های توت‌فرنگی. مجله زیست‌فناوری گیاهان دارویی. 2(2):10-21
[16] Srichana D, Phumruang A and Chongkid B (2009). Inhibition effect of betel leaf extract on the growth of Aspergillus flavus and Fusarium verticillioides. Science & Technology Asia 74-77.
[17] Hoque M M, Rattila S, Shishir,M A, Bari M L, Inatsu,Y and Kawamoto S (2011). Antibacterial activity of ethanol extract of betel leaf (Piper betle L.) against some food borne pathogens. Bangladesh Journal of Microbiology. 28(2):58-63.
[18] Kamazeri T S A T, Abd Samah O, Taher M, Susanti D and Qaralleh H (2012). Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pacific journal of tropical medicine. 5(3):202-209.
[19] Joshi B, Sah G P, Basnet B B, Bhatt M R, Sharma D, Subedi K, Pandey J and Malla, R. (2011). Phytochemical extraction and antimicrobial properties of different medicinal plants: Ocimum sanctum (Tulsi), Eugenia caryophyllata (Clove), Achyranthes bidentata (Datiwan) and Azadirachta indica (Neem). Journal of Microbiology and Antimicrobials 3(1):1-7.
[20] Hui L, He L, Huan L, XiaoLan L and AiGuo Z (2010). Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacteria. African Journal of Microbiology Research. 4(4):309-313.
[21] Wilson C L, Solar J M, El Ghaouth A, and Wisniewski M E (1997). Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant disease. 81(2):204-210.
[22] Abdelgaleil S A (2006). Chemical composition, insecticidal and fungicidal activities of essential oils isolated from Mentha microphylla and Lantana camara growing in Egypt. Alex. Sci. Exch. J. 27:18-28.
[23] Ahmed S M, and Andelgaleil S A M (2008). In vitro inhibition of plant pathogenic fungi and control of grey mould and soft root of strawberry by essential oils. Journal of Pest Control and Environmental Sciences, Egypt. 16:69-86.
[24] Taghizadeh M and Solg M (2014). The application of essential oils and silver nanoparticles for sterilization of bermudagrass explants in in vitro culture. International Journal of Horticultural Science and Technology. 1(2):131-140.
[25] Gouran A, Mozafari A and Ghaderi N (2012). The effect of antimicrobial agents on the surface sterilized grape explants in in vitro culture Vitis vinifera L. In 6th congress of the Agricultural Research findings, Kordestan University, Kordestan, Iran. 15-16.
[26] Deein W, Thepsithar C and Thongpukdee A (2013). In vitro culture medium sterilization by chemicals and essential oils without autoclaving and growth of chrysanthemum nodes. International Journal of Bioengineering and Life Sciences. 7(6):407-410.
[27] Spooner D M (2013). Solanum tuberosum (potatoes). Brenner's Encyclopedia of Genetics. 481-483.
[28] Gixhari B (2018). In vitro micropropagation of potato (Solanum tuberosum L). cultivars. Poljoprivreda i Sumarstvo. 64(4):105-112.
[29] Pence V C (2005). In vitro collecting (IVC). I. The effect of collecting method and antimicrobial agents on contamination in temperate and tropical collections. In Vitro Cellular & Developmental Biology-Plant. 41:324-332.
[30] Behbahani B A, Noshad M and Falah F (2019). Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microbial pathogenesis 136:103716.
[31] Teng W L and Nicholson L (1997). Pulse treatments of penicillin-G and streptomycin minimize internal infections and have post-treatment effects on the morphogenesis of ginseng root culture. Plant cell reports. 16(8):531-535.
[32] Çölgeçen H, Çalişkan U K and Toker G (2011). Influence of different sterilization methods on callus initiation and production of pigmented callus in Arnebia densiflora Ledeb. Turkish Journal of Biology. 35(4):513-520.
[33] Prabhu S and Poulose E K (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters. 2:1-10.
[34] Abdi G, Salehi H and Khosh-Khui M (2008). Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiologiae Plantarum. 30:709-714.
[35] Rostami A.A and Shahsavar A (2009). Nano-silver particles eliminate the in vitro contaminations of Olive mission explants. Asian Journal of Plant Sciences. 8:1-5.
[36] قرائتی س، ضرغامی ر و امیری م (1389). ارزیابی کاربرد نانو نقره برای حذف آلودگی و زنده ماندن گره قطعه کشت شده گردوی ایرانی در شرایط in vitro. پنجمین همایش ایده نو در کشاورزی، دانشگاه آزاد اسلامی، خوراسگان. 26 تا 27 بهمن 1389.
[37] Safavi K, Mortazaeinezahad F, Esfahanizadeh M and Asgari M J (2011). In vitro antibacterial activity of nanomaterial for using in tobacco plants tissue culture. World Acad Sci Eng Technol 79:372-373.
[38] Anvari S G, Carapetian J and Dejampour J (2012). Effects of nanosilver and vancomycin in sterilization of peach× almond hybrids in the in vitro cultures. International Journal of AgriScience. 2(5):457-465.
[39] Fakhrfeshani M, Bagheri A and Sharifi A (2012). Disinfecting effects of nano silver fluids in Gerbera (Gerbera jamesonii) capitulum tissue culture. Journal of Biological and Environmental Sciences. 6(17):121-127.
[40] Husain M K, Anis M and Shahzad A (2007). In vitro propagation of Indian Kino (Pterocarpus marsupium Roxb.) using thidiazuron. In Vitro Cellular & Developmental Biology-Plant 43:59-64.