[1] Costa A, Naranjo JD, Londono R, Badylak SF. Biologic Scaffolds. Cold Spring Harb Perspect Med. 2017; 7 (9).
[2] Park JY, Park SH, Kim MG, Park S-H, Yoo TH, Kim MS. Biomimetic scaffolds for bone tissue engineering. Biomimetic Medical Materials: From Nanotechnology to 3D Bioprinting. 2018:109-21.
[3] Hata Y, Iida J. Scaffold Protein. In: Binder MD, Hirokawa N, Windhorst U, editors. Encyclopedia of Neuroscience. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 3613-6.
[4] Ballav S, Deshmukh AJ, Siddiqui S, Aich J, Basu S. Two-dimensional and three-dimensional cell culture and their applications. Cell Culture—Advanced Technology and Applications in Medical and Life Sciences.
2021.
[5] Segeritz C-P, Vallier L. Cell culture: Growing cells as model systems in vitro. Basic science methods for clinical researchers: Elsevier; 2017. p. 151-72.
[6] Ghanemi A. Cell cultures in drug development: Applications, challenges and limitations. Saudi Pharm J. 2015;23(4):453-4.
[7] Riss TL, Moravec RA, Duellman SJ, Niles AL. Treating cells as reagents to design reproducible assays. SLAS DISCOVERY: Advancing the Science of Drug Discovery.
2021; 26(10):1256-67.
[8] Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci.
2018; 14(4):910-9.
[9] Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Frontiers in molecular biosciences. 2020;7:33.
[10] Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda). 2017;32(4):266-77.
[11] Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and drug development technologies. 2014;12(4):207-18.
[12] Campuzano S, Pelling AE. Scaffolds for 3D cell culture and cellular agriculture applications derived from non-animal sources. Frontiers in Sustainable Food Systems. 2019;
3:38.
[13] Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V. Microfluidics‐based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioengineering & translational medicine. 2016;1(1):63-81.
[14] Kuklina G, Ipatov S, Gorshkov A, Pechenkin D, Eremkin A, Kuznetsovsky A, et al. Obtaining and characterization of hybridomas producing monoclonal antibodies against coronavirus SARS-CоV-2. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2023;
1:105-10.
[15] WEBER E, MEDEK R, inventorsHybridoma cell lines and use thereof for producing a monoclonal antibody against the human cardiac myosin binding protein c (c-protein, mybpc3, cmybp-c or my-c). Germany2020.
[16] Puligedda RD, Sharma R, Al-Saleem FH, Kouiavskaia D, Velu AB, Kattala CD, et al., editors. Capture and display of antibodies secreted by hybridoma cells enables fluorescent on-cell screening. MAbs; 2019: Taylor & Francis.
[17] Xiang Min CL, Hu Xiuzhong, Zhou Yuan, Yu Jie, Liu Xiaohua, Wang Dingfa, Xia Yu, Tao Bifei, inventorHybridoma cell strain, preparation method and application thereof, monoclonal antibody and application thereof. China2019.
[18] Sun Guanru AX, Zhang Limin, inventorHybridoma cell strain, monoclonal antibody produced by hybridoma cell strain and application of hybridoma cell strain2019.
[19] Trier NH, Friis T. Production of Antibodies to Peptide Targets Using Hybridoma Technology. Peptide Antibodies: Methods and Protocols: Springer; 2024. p. 135-56.
[20] Singh G, Shiri T, Kumar A, Jain S. HYBRIDOMA TECHNOLOGY USED FOR THE SCANNING OF VARIOUS DISEASE & CURE WITH THE HELP OF MABS. 2021.
21. [21] Nilsson K, Scheirer W, Merten O, Östberg L, Liehl E, Katinger H, Mosbach K. Entrapment of animal cells for production of monoclonal antibodies and other biomolecules. Nature. 1983; 302 (5909).
[22] Panahi HKS, Dehhaghi M, Aghbashlo M, Karimi K, Tabatabaei M. Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae). Renewable and Sustainable Energy Reviews. 2019;112:626-42.
[23] Hashimoto K, Shirai Y. Continuous Production of Monoclonal Antibody by Hybridoma Cells Immobilized in Hardened Alginate Gel Particles a. Annals of the New York Academy of Sciences. 1990; 613 (1):216-
26.
[24] Lim F, Moss RD. Microencapsulation of living cells and tissues. Journal of pharmaceutical sciences. 1981;70(4):351-4.
[25] Iijima S, Mano T, Taniguchi M, Kobayashi T. Immobilization of hybridoma cells with alginate and urethane polymer and improved monoclonal antibody production. Applied microbiology and biotechnology. 1988;28:572-
6.
[26] Tanaka H, Irie S. Preparation of stable alginate gel beads in electrolyte solutions using Ba2+ and Sr2+. Biotechnology techniques.
1988;2(2):115-20.
[27]Murakami H, Masui H, Sato GH, Sueoka N, Chow TP, Kano-Sueoka T. Growth of hybridoma cells in serum-free medium: ethanolamine is an essential component. Proceedings of the National Academy of Sciences. 1982;79(4):1158-62.
[28] Kim S-K, Son J-H, Yu S-H. Encapsulated animal cell culture for the production of monoclonal antibody (MAb). Biotechnology and bioprocess engineering. 1997;2:73-6.
[29] Lazar A, Silberstein L, Mizrahi A, Reuveny S. An immobilized hybridoma culture perfusion system for production of monoclonal antibodies. Cytotechnology. 1988;1: 331-7.
[30] Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. Materials.
2021;14(4):858.
[31] Luo J, Yang ST. Effects of three‐dimensional culturing in a fibrous matrix on cell cycle, apoptosis, and MAb production by hybridoma cells. Biotechnology progress.
2004;20(1):306-15.
[32] Butler M. Serum and Protein Free Media. In: Al-Rubeai M, editor. Animal Cell Culture. Cham: Springer International Publishing; 2015. p. 223-36.
[33] Levesque MC, O'Loughlin CW, Weinberg JB. Use of serum-free media to minimize apoptosis of chronic lymphocytic leukemia cells during in vitro culture. Leukemia.
2001;15(8):1305-7.
[34] Schepici G, Gugliandolo A, Mazzon E. Serum-Free Cultures: Could They Be a Future Direction to Improve Neuronal Differentiation of Mesenchymal Stromal Cells? Int J Mol Sci.
2022;23. (12)
[35] Tomizawa M, Shinozaki F, Sugiyama T, Yamamoto S, Sueishi M, Yoshida T. Sorafenib suppresses the cell cycle and induces the apoptosis of hepatocellular carcinoma cell lines in serum-free media. Experimental and therapeutic medicine. 2010;1(5):863-6.
[36] Capiaumont J, Legrand C, Dousset B, Belleville F, Nabet P. Hybridoma culture in polyether sponge with bovine whey. In Vitro Cellular & Developmental Biology-Animal. 1995;31:412-4.
[37] Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. Materials (Basel).
2021;14 (4).
[38] Kulkarni GV, McCulloch CAG. Serum deprivation induces apoptotic cell death in a subset of Balb/c 3T3 fibroblasts. Journal of Cell Science. 1994; 107(5):1169-79.
[39] Zanghi JA, Fussenegger M, Bailey JE. Serum protects protein‐free competent Chinese hamster ovary cells against apoptosis induced by nutrient deprivation in batch culture. Biotechnology and bioengineering. 1999;
64(1):108-19.
[40] Merghes P, Ilia G, Maranescu B, Varan N, Simulescu V. The Sol–Gel Process, a Green Method Used to Obtain Hybrid Materials Containing Phosphorus and Zirconium. Gels.
2024; 10(10):656.
[41] Subhayu C. A REVIEW OF THE SOL-GEL PROCESS AND ITS APPLICATION. International Education and Research Journal (IERJ). 2024; 10 (7).
[42]Yuan C, Wang M, Li M. Design and synthesis of silica- and silicate-based materials, and their application in the development and analysis of latent fingerprints. TrAC Trends in Analytical Chemistry. 2023; 167:117278.
[43] Andreani T, Silva AM, Souto EB. Silica-based matrices: State of the art and new perspectives for therapeutic drug delivery. Biotechnology and Applied Biochemistry.
2015; 62(6):754-64.
[44] Björk EM, Militello MP, Tamborini LH, Coneo Rodriguez R, Planes GA, Acevedo DF, et al. Mesoporous silica and carbon based catalysts for esterification and biodiesel fabrication—The effect of matrix surface composition and porosity. Applied Catalysis A: General. 2017;533:49-58.
[45] Latif WA, AL-Owaidi MN. Sol-gel method,‘’synthesis and applications’’. World Journal of Advanced Engineering Technology and Sciences. 2023;8(2):160-6.
[46] Desimone MF, De Marzi MC, Alvarez GS, Mathov I, Diaz LE, Malchiodi EL. Production of monoclonal antibodies from hybridoma cells immobilized in 3D sol–gel silica matrices. Journal of Materials Chemistry.2011; 21 (36):13865-72.
[47] Nasr Azadani R, Sabbagh M, Salehi H, Cheshmi A, Raza A, Kumari B, Erabi G. Sol-gel: Uncomplicated, routine and affordable synthesis procedure for utilization of composites in drug delivery: Review. Journal of Composites and Compounds. 2021; 3(6):57-70.
[48] Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, et al. Nanomaterial by Sol-Gel Method: Synthesis and Application. Advances in Materials Science and Engineering. 2021; 2021(1):5102014.
[49] Kunarti E, Moran G. Entrapment of avidin in sol-gel derived silica glasses. Journal of Physical Science. 2008; 19(2):31-44.
[50] Wang T, Wang L, Gong X, Chang Z, Yang S, Li J, Wang Z. An Optimized Fed-Batch Culture Strategy Based on Multidimensional Time Series Aggregation. Applied Sciences.
2023 ; 13 (11):6427.
[51] Markov SM. Cell growth models using reaction schemes: batch cultivation. Biomath.
2013; 2(2): ID: 1312301-ID